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ABSTRACT

A philgsophical problem arises when one attempts to predict a .
competitive economy's response to a fundamental change in its structure
with the aid of a competitive equilibrium model. Unless the model is
known to admit unique solutions, there is little basis for assuming that
the computed equilibrium will be attained, even though the model accurately
describes the economy's structure and the behavior of its agents., If,
however, one is able to arrive at the new model by continuously deforming
the old one, then the two versions generally admit soiutions which are
connected by a path of equilibria arising from the continuum of inter-
nediate economies. By ascribing a suitabdle dynamic interpretation to
the deformation, one obtains a rationale for expecting the path-connected
solutions to be mutually attained.

A\Tg; description of economic deformations and the computatcion of
equilibrium psths is the cenﬁral theme of this study. A general mathematical
framework for modeling economies under deformation is developed By-expanding
Herbert Scarf's original activity analysis formulation to incluvde uncount-—
able unit activity sets, unbounded multi-valued demand correspondences,
and tax and revenue systems similar to those introduced by John Shoven
and John Whalley. Deformations of virtually all economic constructs are
allowed in this general model.

The computation of equilibrium paths is accomplished by a simplicial
pivot algorithm designed along the liunes of the homotopy-type fixed point

techniques pioneered by Curtis Eaves. The dimension normally used to _——
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:refine piecewise linear approximations now serves as the index of the
economic deformation. To make this approach viable in practice, a new
family of triangulations of Euclidean space is fashioned out of two con-
ventional triangulations invented by Michael Todd. The geometfy of these

triangulations can be dynamically altered by the algorithm as it attempts

to maintain uniform approximation error along the equilibrium path.

The economic model and computational algorithm are translated
into a set of computer routines which generate explicit numerical approxima-
tions to equilibrium paths for a variety of ex;mples. \pue to the vast
amounﬁ of information embodied in an equilibrium path,lproblems of this
type require a great deal of computational effort. A detailed analysis
of tge behavior of the algorithm on a series of test problems is presented

in the final chapter.
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herein represented the state of the art in 1975, the author recognizes
that advances in the area of fixed point calculation made during the past

three years could perhaps be adapted to expand, simplify, or enhance the

performance of these techniques.
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to John Shoven who, despite an unusually demanding schedule, found time
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legible form.
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CHAPTER 1

INTRODUCTION

1.1, Background of the Problem

A little over a decade after general competitive equilibria were
first shown to exist, Herbert Scarf breathed new life into competitive
equilibrium theory by developing a workable algorithm for computing
equilibrium prices and commodity flows in general Walrasian models [12].
The algorithm grew out of Scarf's earlier work on the computation of
fixed points of a continuous mapping. Like the techniques that preceded
it, the algorithm derived its validity frem the anti-cycling principle
of Lemke and Howson, Scarf's approach transcended conventional fixed-
point methods, however, by operating on a space half the dimension of
the one normally encountered in the fixed-point step of existence proofs,
This material reduction of dimension was achieved at the modest expense
of requiring technology to exhibit constant returns to scale (CRS). The
algorithm also harbored an ability to converge even when demand responses
were unbounded, Hence the elaborate and non-constructive truncation
arguments found in virtually all pure existence proofs became superfluous
for CRS models.

Scarf's achievement raised for the first time the possibility of
extending the scope of competitive equilibrium theory from the realm of
pure theory into the empirical arena, The prospect of fitting the theory
to reality, however, highlighted some of the more artificial aspects of

the strict neo-classical interpretation. Many of these features will
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either have to be revised or abandoned if the theory is ever to meet the
scientific criterion of providing sound predictions. A first step in

this direction has been taken by two of Scarf's students, John Shoven

and John Whalley, who incorporated certain aspects of government fiscal .
policy into a competitive equilibrium framework [19].

The present study abandons the requirement that all consumption and
production decisions be made at one instant of time for the entire life-
span of the economy. Instead the view is taken that a competitive
economy evolves through a series of short-to-medium term responses by
consumers and producers to longer term exogenous changes in the environ-
ment., These exogenous changes could result either from the conscious
actions of governrental authorities or from autonomous .factors such as
technological innovation, shifts in consumer tastes, or unperceived
depletion of a vital resource, They could be completely independent of
economic behavior or linked to it in some specific manner, perhaps even
stochastically., Based on this revised intertemporal interpretation,
forecasts of future economic behavior can be prepared by first estimating
likely values of the autonomous factors, then allowing for proposed
government policy, and finally solving for a short-run equilibrium via
Scarf's algorithm, This procedure parallels the intuitive approach

taken by most economists when asked to predict the future value of some

economic variable.

Unfortunately the procedure conceals a serious technical flaw. Even

if the parameters of some future economy are known with complete certainty

and the economy attains a competitive equilibrium consistent with these

o
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parameters, the computed forecast could still be wrong. This can occur
whenever multiple equilibria are present. In such instances there is no
way of knowing whether the equilibrium computed by Scarf's algorithm
will be the one attained. The problem is compounded by the fact that no
general method exists for locating all the equilibria in a given model.
This predicament is especially frustrating if one wishes to design economic
policy based on the forecasts.

The multiple equilibrium dilemma is illustrated in Figure 1.1.1.
A hypothetical competitive economy occupies equilibrium state A at

time ¢t Exogenous parameter changes transform the initial economy into

o

one admitting three equilibria X Y and Z at time Which of the

tl.

three states will actually be attained is open to question, however,

o X Y Z
t, oo @mmmneee @---ooennee- ®---
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Figure 1.1.1. The multiple equilibrium dilemma,




The potential ambiguity of forecasts based on competitive equilibrium

models has been recognized by mathematical economists for some time.

Arrow and Hahn [2] conclude that '"this problem must. be ihf:imtely related
to that of the uniqueness of an equilibrium and it is pretty clear that
we shall not expect to get very far without stipulating one or the other
of the conditions that ensure such uniqueness." The present study submits
that this conclusion is unduly pessimistic and offers instead a method

for obtaining unambiguous forecasts even in the presence of multiple
equilibria,

The heart of the method consists of the notion of continuous deforma-
tion of a competitive economy. The underlying assumption is that the
exogenous parameters which determine short-run equilibria in some economy
evolve continuously over time. An alternative description of this process
is that the economy undergoes a deformation. The end product of the
deformation is a continuum of economies, one for each time point in some
interval. Each intermediate economy presumably possesses its own set of
competitive equilibria. Plotting the equilibrium set of each economy
against its time index produces a fevealing subset of price-index space

called the equilibrium graph of the deformation. The geometry of the

equilibrium graph provides the key to resolving ambiguity in forecasts.
A variety of geometric forms are possible. The equilibrium graph
of the hypothetical economy discussed earlier could for example assume
any of the shapes displayed in Figures 1.1.2 through 1.1.4, One feature
must always be present, however: a connected subset of equilibria spanning

the interval of the deformation., This phenomenon is intimately related

to the fixed point theorem of Felix Browder.
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Figure 1.1,2. Mutually inaccessible sets of equilibria.
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Figure 1.1.35. The divergence effect,
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Figure 1.1.4, The catastrophe effect,
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Given the equilibrium graph for a particular deformation, the opera-
tional hypothesis is that a competitive equilibrium always follows a
connected component of the graph whenever possible. Thus in Figure 1.1.2
the equilibrium would move along arc AX as the time index advanced from
ty to ty, rendering states Y and Z inaccessible. In Figure 1.1.3

0

the equilibrium would progress from A to B, then veer to the right or

the left depending on the detailed adjustment mechanics in operation at
that instant. The situation in Figure 1.1l.4 is somewhat more complex,

At time ¢t

o after the equilibrium has moved from A to B, the economy

would experience a period of severe market disruption while prices
readjusted to state C. If however, arc XY were to dip below the ¢t
level, then the ensuing equilibrium would be impossible to predict.
The view of equilibrium dynamics implicit in these examples is
that the economy responds to all parameter changes by restoring equilibrium,
and that it does so with a minimum of market dislocation. A rigorous
defense of this interpretation would require the demonstration of some
form of stability for the equilibria along the path and some assurance
that the exogefous parameters change slowly enough to permit economic
adjustments to take effect. Although such questions are interesting
and perhaps necessary for purposes of interpretation, they are of secondary
concern to this study, principally because the computational techniques
, developed herein apply whether such conditions are present or not.
The idea of using connected components of equilibrium graphs to
resolve ambiguity in economic forecasts was inspired largely by the work

of Curtis Eaves in the computation of fixed points [7], [9]. An extemsion




of Eaves' methods also provides the means for computing numerical approxima-
tions to such components. Eaves originally set out to remedy a weakness
in Scarf's general purpose fixed-point algorithm, namely that once an
approximate solution is found, the location of that solution contributes
nothing to the search for a more accurate solution. Eaves resolved this
difficulty by introducing the topological concept of homotopy into the
fixed-points arena. Simply stated, one appends an extra dimension tc the
domain of the problem of interest and uses this dimension to index a
family of approximations to the original problem. A simplicial pivot
algorithm follows solutions of the approximate problems closer and closer
to a solution of the problem of interest. The family of approximate
problems and the path of solutions are special cases, respectively  of the
homotopy and connected set of fixzed points that arise in Browder's theorem.
As soon as Eaves' algorithm became widely known, speculation arose
as to whether the technique could be extended to compute Browder paths
for more general types of homotopies. The only apparent requirement was
to use the extra dimension to index an arbitrary family of problems rather
than a series of approximations to a particular problem. It was further
conjectured that the algorithm could be adapted to trace the evolution of
a competitive equilibrium as the parameters defining the economy changed
over time [4]. The present study realizes the ambitions of both conjectures
by devaloping a workable algorithm for approximating connected components
of equilibrium graphs for economies under deformation. At the same time
the advantages of continuously refining grids are made available for

single equilibrium calculations with CRS competitive models.
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The approximate equilibrium graphs generated by the algorithm take
the form of special polygonal paths., The accuracy of approximation along
each path may be prescribed arbitrarily in advance, Examples of the
types of paths that the algorithm would produce for the equilibrium
graphs in Figures 1,1.2 and 1.1.4 are shown in Figures 1,1,5 and 1.1.6.
For structures such as these the algorithm always charts the true course
of the economy. Other geometries can, unfortunately, be more elusive,

The equilibrium graph in Figure 1.1.3, for example, would cause the
algorithm to arbitrarily select one of the two upper branches even though
the economy might follow the other. Also, when the initial economy

4dmits multiple equilibria, the algorithm could conceivably follow a

path which misses the empirically observed equilibrium altogether.
Intricate geometries notwithstanding, the algorithm can successfully
resolve the potential ambiguity of forecasts for a wide class of interest-
ing examples, not the least of which are those admitting unique equilibria

but which are not known to do so.

1.2. Scope of the Study

The computational procedure developed in this study was designed
to handle a very general class of CRS Walrasian models, Many types of
deformations can be applied to these models, including changes in consumer
tastes and wealth, production technology, resource availability, and
taxes and tariffs. To permit the latter type of displacement, tax and

revenue systems of the form introduced by Shoven and Whalley [19] are
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Figure 1.1,5. Polygonal path approximation to equilibrium
graph of Figure 1,1.2,
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Figure 1.1.6, Polygonal path approximation to equilibrium
graph of Figure 1,1.Y4,
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built into the model, The only regularity conditions imposed on the
deformation and the economies are continuity and its extensions to
correspondences, namely upper and lower semi-continuity. Without addi-
tional properties such as differentiability and stability, the interpre-
tation of equilibrium paths may break down, but the mechanics of computing
them are not affected,

The idea of computing equilibrium graphs through an extension of
homotopy-type fixed-point techniques presented a number of technical
challenges. The first of these was fitting Scarf-type economic labels
onto Eaves' fixed-point framework. This was accomplished in part by
ascribing an extra degree of range freedom to Eaves' abstract labeling.
The extra freedom in turn necessitated an additional assumption to insure
that certain linear inequality systems remained bounded. To accommodate
parametric change in the economies an extra degree of domain freedom
was also added to the labeling. These modest generalizations are carried
out in Chapter 2,

The other part of the merger involved a refinement of Scarf's
method of labeling the boundary of the price simplex. This was necessary
in order that certain '"completeness'" conditions of the abstract algorithm
be met. At the same time Scarf's elementary activity analysis model was
generalized to cover some situations which had arisen in practice but
had no formal justification, e.g., uncountable unit activity sets and
unbounded multi-valued demand functions. The ability to handle unbounded
demand functions is particularly important since truncation of the type

employed in most existence proofs cannot be performed numerically., As a

10




result of these extensions, CRS competitive models of full "existence
proof" generality can now be solved numerically. Beyond the enhancement
of Scarf's model in these traditional directions, tax and revenue systems
; la Shoven and Whalley were included to permit the evaluation of fiscal
policy. Finally, the context of the model was broadened from a single
economy to a continuous family of economies, each possessing the same
structural components but different parametric values. A comprehensive
treatment of the economic model and labeling appears in Chapter 3, along
with proofs that the algorithm clusters in the limit around a connected
component of the equilibrium graph, and that after a finite number of
iterations a meaningful approximation of pre-determined accuracy is
available.

Once the union of Scarf's economic labeling and Eaves' fixed-point
scheme was consummated, a thorny practical matter still had to be resolved.
The problem was that none of the conventional triangulations used in
homotopy-type fixed-point algorithms were suitable for computing equilibrium
graphs, because they all led to grossly uneven quality of approximation along
the graph. An even more disturbing realization was that no single
triangulation could provide the uniform quality desired for all problems.
A way out of this predicament was found through the dynamic manifold
definition principle expounded in Chapter 4, Using this principle two
new families of triangulations were constructed from portions of Michael
Todd's Jl and J3 triangulations [20]. Every example submitted to
the algorithm automatically causes a triangulation from one of these

families to be custom tailored to its accuracy needs.

11
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In order to test the efficacy of the algorithm, a series of numerical
experiments was conducted using computer programs designed to implement
the procedure. The experiments consisted of thirteen test problems, each
of which fit one of the specialized versions (developed in Chapter 5) of
the general economic model. The results of the experiments are reported
and analyzed in detail in Chapter 6. The experiments demonstrate con-
clusively that the algorithm functions as intended but expends large amounts
of computational effort, An analysis of iteration counts suggests that
the effort results not so much from the inefficiency of the algorithm
as from the vast amount of information inherent in the extremely precise
approximate equilibrium graphs that were generated, Owiné to this inherent
expense, applications presently appear to be limited to models with a
dozen or so commodities when high precision is required. Relaxing
accuracy requirements by a few percent would permit twenty commodity
examples to be solved in a reasonable amount of time, Both of these
ceilings will  of course, rise as computer technology advances.

The development of the techniques presented in this study would
not have been possible without the previous accomplishments of five men.
Their influence ranges from the conceptual plane to specific formalisms
and proofs. The economic labeling and general logic of the convergence
and finite approximation proofs are due to Herbert Scarf. The deformation
concept and elegant formalism of Chapter 2 are due to Curtis Eaves. John
Shoven and John Whalley influenced the study in several ways: their

method of adding taxes to competitive equilibrium models was copied almost




verbatim; much of the data in the numerical experiments was supplied by
Shoven; and their pioneering efforts in the empirical comparison of
equilibria raised the fundamental questions that motivated the study in
the first place. Finally, the algorithm could never have been made
computationally feasible without Michael Todd's "union jack' triangulations
[20], and without his theoretical measures of directional demsity [21],
the efficiency of the procedure would have been difficult to judge.
Although this study is oriented exclusively toward economic
equilibrium calculations, many of its techniques can be adapted to the
computation of general parametric fixed points. The relevant parts for
this purpose are the fundamental algorithm of Chapter 2 and the dynamically
defined manifolds and control heuristics of Chapter 4. Parametric fixed-
point problems may actually be easier to solve than the economic models

considered here because of greater regularity in the labeling.

13
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1.3. Notation and Conventions

The terminology and elementary mathematical tools used in this

study are hybrids of those found in the literatures of mathematical

economics and operations research, The influence of the latter field

is apparent in the heavy use of vector and matrix notation. The main

purpose of this section is to explain the symbols, conventions, ete.,

which differ in some respect from standard usage.

The general setting of the study is (n+l)-dimensional Euclidean

n+l

space Rn+1 where n > 0. The axes of R

; are indexed O, s

n.

2
Vectors in Rn+1 are denoted by lower case Greek and Roman letters, No
notational distinction is made between row and column vectors, but the
general rule applies throughout that all vectors are column vectors
unless they pre-multiply a matrix or another vector.

n+l

The components of a vector x in R are denoted x(i) for

0<i<n, If a is a rcu-cuwpty subset of (O,

||

.e., 0} with |of
members, then x(Q) denotes the vector in R whose components are
x(i) for i € @. A subscript on a vector or any other object merely
distinguishes that object from others denoted by the same symbol. A
superscript on a vector or any other object indicates the position of
the object in a sequence, Thus the symbol x?(i) denotes the i-th
component of the k-th term of the j-th sequence of x's, A single
exception to this rule occurs in Chapter 5 where the continuous parameter }‘
t appears as a superscript, :

Vectors in the canonical basis Jh+l of Rn+1 are denoted e

2
L

el is factored into components R™" and

for 0 < j < n. Whenever R

Rn-m, canonical vectors for these subspaces will be denoted by the symbols

1 |




f and g respectively, with no subscripts to distinguish along which dimen-
sion each vector lies. The identity matrix of any dimension will be

denoted by the letter I, The letter e will denote a vector all of

whose components are 1 and whose dimension is determined by context.
Pre-multiplying a vector by e merely sums the components of that vector.

Three order relations in Rm'l are used in subsequent chapters.
1

For x, y in Rn_+ ,

(a) x<y means x(i) <y(i) for all coordinates 0 < i < n;
(b) x<y means x <y but x £y;

(¢) x <<y means x(i) <y(i) for all coordinates 0 < i < n,

If x =0, then y is said to be non-negative, K semi-positive, or strictly

positive according to (a), (b), or (c).

The positive and negative parts x* and x of a vector x in

Rn+1 are defined by .I
{x(i) ; if =(i) >0
(a) x+(i) =
o, if =%(1) <0
- -x(1i) , if x(i) <o
(b) X (i) = {
0 if x(i) >0

where 05 i<n,

n+l

The sign of a vector x in R is defined by i

s ) if x(i) >0
(sgn x)(i) ={ O, if x(i) =0
l-1 5 if x(i) <0 ’

for 0<i<n,
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All algebraic operations and order relations in Rn+1 have natural
extensions to the power set of Rn+1. If the symbol * denotes addition,

1

, then A * B is the set of

subtraction, or inner product and A B c rR™

all objects a * b where (a,b) € A x B, Similarly if * denotes one
1

’

of the order relations in Rn+ then A * B is true iff a * b holds for

each (a,b) imn A x B.

Some additional operations on subsets A /B of Rn+1 include:
(a) A+ - the non-negative vectors in A;
(b) card A - the cardinality of A;

(¢) conv A

the convex hull of A;

(d) aff A - the affine hull of A;

(e) pos A the convex cone generated by A;

(£f) A\B - the set theoretic difference of A and B.

Convex polyhedra are sets formed by intersecting a finite number of
closed halfspaces of Rn+1. The facets of a convex polyhedron are the
maximal convex subsets of the relative boundary of the polyhedron. A
special class of convex polyhedra used extensively in Chapter L is the
class of j-dimensional simplices for 0 < j < n. A j-dimensional
simplex o 1is the convex hull of j+1 affinely independent points
Xy cces xj called its vertices, Such a simplex p is denoted by the
(j+1)-tuple (xo, “eey xj), which implies an ordering of the vertices,

A face of p is the relative interior of a simplex determined by a

(possibly improper) subset of its vertices. (Note that faces are rela-

tively open while facets are relatively closed.) i




A collection of (n+l)-simplices constitutes a triangulation of
1

some subset of g™ if the faces of all simplices in the collection
partition the given subset,

The standard n-dimensional simplex (eo, siefety en) will be denoted
by the letter S, or if the value of n needs to be made explicit, by
the symbol Sn. If T is an interval, then facets of the product set
S x T which are extensions of facets of S are denoted by Fi’ where i
is the unused dimension of Rn+1.

The set An+1 consists of all vectors in Rm'1 whose components
are +1. The symbol Yn+1 denotes the group of permutations on
{0, 1, ..., 8l

If o is a finite ordered subset of Rk consisting of n elements
Vor s Vool and L is any mapping from Rk to Rm, then L(o) is
the (mxn)-matrix whose columns are L(VO)’ e ey L(vn-l)' The collection
of all mxn real matrices is denoted by R™®, Elements of a matrix
A in R™® are denoted by A(i,j), rows by A(i,-), and columns by
A(-,3).

Lexicographic linear inequality systems are needed in the development
of the fundamental algorithm in Chapter 2. The usual lexicographic
ordering Z in R" is extended row-wise to R™ in the same way that
the usual non-negative ordering > in R1 is extended to R"™. A concise
account of the fundamentals of lexicographic linear inequality systems
appears in Section 1,2 of [6].

1

A metric topology is induced on s by one of three equivalent

norms: :

17
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(a) Il = wax, [x(1);
(b) lxll, = [x(0)| + -+ + |x(n)];
(¢) Il = (x(0)2 + +o+ 4 x(m)*) Y2,

1
Observe that for x in Rn+ \ |

Ix"“‘s Hx"a‘s Hx“l. Also note that if x
is partitioned into (xl,xe), then ||x||1 = "x1"1 8 "x2“1' Holder's

inequality |xy| < Hx“m "y“l is used repeatedly in Section 3.5.

n+l

If A,B are subsets of R and H "p is one of the norms defined

above, then distp (A,B) = inf{”a-bﬂp : (a,b) € AxB}. The definition
extends naturally to the case where either A or B is a point,
Similarly define diamP A= sup{"a-b"p : a,b € A},

Whenever a discussion involving norms, distances, or diameters is
insensitive to which norm is used, the subscript on I "P’ distp, or
diamp will be suppressed.

The symbol (ck) represents an infinite sequence of objects ok,

where k implicitly ranges through the set of non-negative integers Z+.

n+l n+l

1f (ok) is a sequence of subsets of R and x € R, then o

means that diam(ak U {x}) 20 as k 5o, If n =0 then ck - +o means

that ck eventually leaves every interval (-o N] for N in Z .

’ +

Much of the analysis in this study is conducted with correspondences,

mappings from R o (R

n+1l : " o
of R™". Two regularity concepts generalize the usual notion of comntinuity

1.8 n+1)*

vy , the collection of non-empty subsets

to correspondences:

(a) Upper semi-continuity: A correspondence ¢ : r? -»(Rn+l)*

to be upper semi-continuous (u.s.c.) iff X - x € Rz, yk € °(xk),

is said

S

E
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and yk -y € Rn+l jointly imply that y € ®(x). The upper semi-

continuity of a correspondence is equivalent to the correspondence

having a closed graph.

b 2™ i sand

(b) Lower semi-continuity: A correspondence ¢ : R” —

to be lower semi-continuous (l.s.c.) iff < 5 x € R? and

y € ®(x) jointly imply that 3 yk € L(xk) s.t. yk -vy.

A correspondence which is both u.s.c. and l.s.c, is said to be
continuous., The notion of uniform continuity is extended to correspondences
in Lemma A.5 and Definition A.6. The reader should examine A.6 before
reading the proof of Theorem 3.5..4.

A concept from metric space topology called the Lebesgue number of

a covering is needed at two or three points in the analysis. 1If {Ua]aéia

is an open covering of a compact metric space X then there exists a
® >0 such that any subset A of X whose diameter is less than d
lies in some Ua. Any such constant ©® is called 2 Lebesgue number of
the covering [Ua3a€a'

Chapter 3 contains many integer intervals of the form I+1 < j < J.

Whenever I = J, this interval is defined to be the empty set @. 1In

s
this case any summation indexed by the interval, such as z§-1~1 y(i),
is defined to be zero.

The term "algorithm'" is used in this study to describe any iterative

computational procedure, whether or not the procedure terminates after a

finite number of steps.
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The body of this dissertation is organized into chapters, sectionms,
and items within sections. Three levels of indexing are used to keep
track of these entities, e.g., 3.2.5 refers to item 5 in Section 2 of
Chapter 3, Figures and tables are indexed independently of the other
items in each section. An exception to these rules is Appendix A which
contains no sectionms.

References are designated by enclosing the entry number in square

brackets, e.g., [12].
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CHAPTER 2

THE FUNDAMENTAL ALGORITHM

This chapter is devoted to the development of a special type of
search algorithm used subsequently for constructive proofs and for actual
calculations, The algorithm is a modest generalization of the one appear-
ing in [8]). There are two main differences between the algorithm of (8]
and the one presented here, First, the labels here have an extra degree
of freedom both in their range and their domain. Second, the labels here
form a convex cone containing an arbitrary vector rather than a convex
hull containing the origin. The extra degree of range freedom necessitates
an additional assumption on the labeling and the pseudomanifold to insure
boundedness of the linear inequality systems formed by the labels.

Roughly speaking the algorithm steps through a special type of
grid called a pseudomanifold. The path that the algorithm follows is
determined by vector-valued labels attached to grid points. The labels
and the grid points contain the information needed to construct an approx-
imate solution to some underlying problem. In subsequent chapters a
portion of the path generated by the algorithm will be used as an approx-

imation to some equilibrium graph.

2.1, Labelings of S x [0,x).

The geometric setting for the fundamental algorithm and all sub-
sequent theoretical and computational work is the cylinder S x [0,x).

The factor § will house relative commodity prices and revenue flows, |

21
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and the factor [O,@) a function of the economy index. Points in § X (0,=)
are denoted interchangably by the letter v and the pair (s,t) where

S$€S and t € [0,w). Figure 2.1,1 depicts two versions of § X (0,®).

SR |

Sl X [O,eo) 52 X [0’09)

Figure 2.1.1

Note that S x [0,o) has n+2 facets, namely the base S X {0} and
the n+l walls Fi for i =0, 1 ..., n. The projection of S X (0,=)

onto the [0,« factor is denoted by p,.

2.1.1. DEFINITION. An arbitrary mapping L : § x [0,=) —R™"!
is called alabeling of the cylinder S x [0,).

Let L be a labeling of S x [0,0) and p be an arbitrary vector

in Rn+1

2.1.2. DEFINITION. A set Cc S x [0,0) is said to be (L,p)-

complete iff p € pos L(C).




2,1.3. DEFINITION. The pair (L,p) is defined to be proper iff
(a) the vertex set of S x {0} is (L,p)-complete;

(b) no facet of S x [0,0) other than S x (0} is (L,p)-complete.

The (L,p)-completeness property serves as the steering mechanism for the
fundamental algorithm, Beginning with § x {0}, the algorithm generates
an infinite sequence of (L,p)-complete subsets of S x [0,=) by stepping

through the grid structure defined in the next section.

2.2, Abstract Pseudomanifolds on S x [0,)

The fundamental algorithm like most general purpose fixed point
algorithms operates on a special type of grid over the domain of interest.
Such grids are variously known as triangulations, simplicial subdivisions,
or simplicial complexes. An algebraic generalization of these structures

specially tailored to the needs of the fundamental algorithm is defined

below.
Let Kn+1 be a collection of subsets of S x [O,m) of cardinality
n+2. For i =0 and i =n let Ki =(og:s0cTE€ KF+1 and card o = i+l}.
0 n n+1
Elements of K , K and K are called abstract vertices, abstract

n-simplices, and abstract (n+l)-simplicies respectively. If ¢ C T where

1

g € Kn and T € KP+ 3 then o is called an abstract facet of .

2.2.1. DEFINITION. K°*!

is defined to be an abstract pseudo-
manifold on the cylinder S x [O,m) iff the following four conditions

hold:

23
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(a) The vertex set of S x {0}, denoted o° belongs to K° and is the

b
only n-simplex of K® contained in S x (0};

(b) Each ¢ in K® is a facet of precisely one or two T in Kn+1;

(¢) A simplex o in KP is a facet of precisley one T in Kn+1 iff
o 1is contained in a facet of S x [O,m);

(d) For each t in [0,o) only finitely many ¢ in K® meet S x [0,c].

A simple example of an abstract pseudomanifold on S, x [O,w) appears in

1
Figure 2.2.1., The vertex set of each triangle yields one (n+l)-simplex,
the endpoints of each side of a triangle yield an n-simplex, and each

vertex of a triangle constitutes an abstract vertex.

Figure 2,2,1. Abstract pseudomanifold on §; x [0,)

0
Beginning with ¢  the fundamental algorithm generates a sequence
of (L,p)-complete n-simplices in K®. Given any ak in the sequence,

ok+1 is formed by replacing a vertex of ak with a vertex taken from
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one of the (n+l)-simplices comtaining ck. Condition (a) above allows

the algorithm to start from co conditions (b) and (c) keep the algorithm

2
going, and condition (d) insures that the algorithm will eventually climb

arbitrarily high in the cylinder.

2.3. Very Complete Simplices and Adjacency

Only one ingredient in the fundamental algorithm remains to be
specified, namely how to select a vertex of ck for replacement when
ok is transformed into ok+1. The selection is determined by a linear
inequality system involving labels on the vertices of ok. The condition
that must ultimately be satisfied is that ok+1 be (L,p)-complete.
Unfortunately this condition alone will not identify a unique dropping

vertex of ok and without uniqueness the algorithm might cycle. Further-

s
more, some condition on the labeling L 1is required to insure that the
linear inequality systems used for vertex selection are bounded. The
first difficulty is overcome by an extension of the notion of (L,6p)-
completeness to lexicographic inequality systems. The second difficulty
requires an additional assumption.

n

2.35.1. DEFINITION. An n-simplex o in K 1is said to be (L,p)-

very complete iff the lexicographic linear inequality system L(o)Y = (p,I],

Y > 0 has a solution.




e
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2.3.2. ASSUMPTION. (L,p) is a proper pair. (This and all other

assumptions remain in effect throughout the current section.)

2.3.3. LEMMA. 00 is (L,p)-very complete.

Proof: The system L(oo)y =p,¥20 has a solution yo according to

2.1.3(a). If the columns of L(ao) were linearly dependent, the above
system would possess a solution y with at least one 2ero component., By
2.1.3(b) this cannot occur, So L(aO)'1 exists and yo = L(ao)'lp >> 0.
et 0 w20 s USY T S fp, T O

1

2.3.4, ASSUMPTION. For each T in k""" the linear inequality

system L(T)y =P, ¥ 2 0 1is bounded.

2.3.5. LEMMA. Each 7 in ™! has either zero or two (L,p)-
very complete facets.

Proof; Write T = {V Consider the system

0r vn+1}.
(2.3.6) L)Y = [p,1] , Y>o

where Y € R(n+2)x(n+2). A facet o = f\(vj} is (L,p)-very complete
1ff 2.3.6 has a solution which does not use the j-th column of L(T).
Since [p,I] has full row rank, any solution to 2,3.6 must use at least

n+l linearly independent columns of L(t). Hence there is a 1-1
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correspondence between (L,6p)-very complete facets of T and feasible
bases of 2.3.6.

Given a feasible basis of 2.3.6, another feasible basis may be
constructed by lexicographically pivoting on the unused column of L(T).
Such an operation will drive a column from the old basis because of
Assumption 2.3.4 and the leaving column will be unique since n+l columns

are used in every solution of 2,3.,6. Clearly the old basis and new basis

are the only feasible bases of 2.3.6.
The proof is completed by observing that 2.3.6 is either infeasible

or has a feasible basis. a

2.3.7. DEFINITION. Two distinct n-simplices of K are said to

be adjacent iff they are both facets of some (n+l)-simplex in Kn+1.

2.3.8. LEMMA, ao is adjacent to exactly ome (L, p)-very complete

n-simplex in K", Every other (L, p)-very complete simplex in K" is

adjacent to exactly two (L,p)-very complete simplices in K",

Proof: By 2.2.1(a) o belongs to KP, and by 2.2.1(c) o® is a facet
of precisely one (n+l)-simplex ro in Kn+1. By Lemma 2.,3.,3 @ is
(L,p)-very complete, hence by Lemma 2.3.5 TO contains exactly one

other (L, 6p)-very complete facet.

Now suppose o 1is an (L, p)-very complete simplex distinct from

g ao. By 2.2,1(a) o does not lie in S x {0}, and by 2.1.3(b) o does {

1 not lie in any other facet of S x [0,). Hence by 2.2,1(b) and 2.2.1(¢)

——
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g 1is contained in precisely two (n+l)-simplices of Kn+1. By Lemma

2.3.5 each of these (nt+l)-simplices has one (L, p)-very complete facet

other than o. O

2.4, The Algorithm

The machinery has now been assembled to formally state the funda-
mental algorithm, The statement consists of a starting n-simplex and an
induction principle for generating successive n-simplices. An argument
is then required to guarantee that the algorithm cannot cycle. The anti-
cycling argument is based on the well-known Lemke-Howson graph principle.

Let (L,p) be a proper pair and let KP+1 be an abstract pseudo-
manifold on S x [0,») with facets K" and vertices Kp. Assume (L,p)

1

and K jointly satisfy 2.3.4. Define a sequence (ak) of adjacent

(L,p)-very complete n-simpices of K" as follows:
)

k= 0: Let oo be the vertex set of S x [0,x). oo is (L,p)-very

complete by Lemma 2.3.3.

k= 1: Let ol be the unique (L,p)-very complete simplex of K

adjacent to ao. Such a al exists by Lemma 2,3.8.

k> 2: Suppose ao, cl el ck-l have been specified and are adjacent

) b
and (L,p)-very complete, By Lemma 2,3.8 ak-l is adjacent to
two (L,p)-very complete simplices of Kn. One of these is ¢

Define ok to be the other,

28
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Proof: Clearly the finite sequence op

2.4.1, THEOREM, The sequence (ak) is distinct,

L R 2.

y *°°y

Suppose it is distinct for some k > 2 but that ak coincides with one

of the cri for 0 < i < k-1, The definition of ak implies that ck-l

is adjacent to Ui and that i < k-2, Since 01 is the only (L,p)-very

complete simplex adjacent to oo and k-1 >1 it follows that i >0,

But if 1< 1i<k-3 t

i-1 i+l
, O

then ¢~ 1is adjacent to the distinct n-simplices

b4

c and ok-l contradicting Lemma 2.3.8. The theorem follows

s s

by induction. O

2.4.2. COROLLARY., The projection of (ck) onto [0,o) diverges

€0 4o,

Proof: 1In view of the preceding theorem and 2.2.1(d), the algorithm must

eventually vacate every truncated cylinder S x [0,t]. Hence %a(ck) e

as k -, (=

A possible realization of the fundamental algorithm in the pseudo-

manifold of Figure 2.2,1 appears in Figure 2.4.1, For each 1l-simplex

k+1

ok, the succeeding 1l-simplex o is constructed by adding to ck the

vertex opposite ck in the new triangle containing ck, and then by
dropping an old vertex from ok. If S 1is regarded as a price simplex
and t as an economy index, then a portion of the path swept out by (ak)

will be used to approximate the equilibrium graph of a family of economies.

29
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Figure 2.4.1. The fundamental algorithm in S, x [0,=)
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CHAPTER 3

THE ECONOMIC MODEL

This chapter introduces and analyzes the indexed family of CRS
competitive economies which serves as the basic economic model of the
study. The family extends Scarf's original Walrasian model [13] in
several ways, The individual economies, for example, admit unbounded
multi-valued demand correspondences, uncountable production activity sets,
and multi-level tax systems of the form introduced by Shoven and Whalley
[19]. More importantly, the economies are linked together into a continuum
in which every economy is a deformed version of every other one.

The analysis of the economic model progresses through four stages
of development. First, the components of the indexed family of economies
are defined and discussed, Next, a minimal set of assumptions is intro-
duced so that the fundamental algorithm of Chapter 2 can be adapted to
the model. Then, under stronger but more economically meaningful assump-
tions, the path generated by the algorithm is shown to cluster around a
connected component of the equilibrium graph of the family of economies.
Finally, with the aid of two additional assumptions, a finite approximation

theorem is established.

3.1. Components of the Model

The basic economic model consists of a family [e(t)}teT of CRS
Walrasian economies indexed by a real interval T. Generally T will
denote the unit interval [O,1] or the halfline [0}&). Each economy

g(t) in the family possesses the standard attributes of a general
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competitive economy, and in addition contains a number of revenue collec-

tion anddistribution systems of the form introduced by Shoven and Whalley.
The results of Shoven and Whalley are extended to a potentially wider

class of revenue functions and to computation with multiple revenue systems.

Although non-tax realizations of the revenue systems are conceivable (e.g.,
dividend distribution), a tax interpretation will be maintained here.
Three types of agents participate in each economy -- consumers,
producers, and revenue handling agents. Consumers sell their labor and
resource holdings, and purchase goods and services in such a way as to

maximize satisfaction subject to the restriction that expenditures plus

e et o —————————

tax payments must not exceed endowment income plus revenue transfers.
Producers purchase labor and raw materials and sell finished goods and
services in such a manner as to maximize after tax profits. Revenue
handling agents (usually government authorities) collect taxes from pro-
ducers and consumers and redistribute the revenue among consumer groups.
Since real governments spend money as well as collect it and give it away,
they are often modeled both as consumers and as revenue handling agents.

The detailed characteristics of the economic agents are suppressed
in this chapter, and instead their behavior is summarized in terms of

market aggregates, This approach permits more generality and a neater

mathematical development., Examples of consumption sets, utility functioms,

individual endowments, tax rates, etc.,6 which lead to the hypothesized

b4

market aggregates will be presented in Chapter 5,

Every economy in the family {e(t)]teT contains m+1l commodities

4 indexed 0, ..., m (m>0) and n-m revenue systems indexed ml, ..., n
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m+1

(n >m). The commodities are traded at prices = in R+ and the

)

revenue systems are operated at levels r in R:'m. Because all agent
responses are required to be positively homogeneous of degree zero in
prices and revenue levels, these parameters may be normalized so that
(n,r) € S. The family of economies may thus be considered to operate on
S x T. Points in this cylinder will be denoted as v = (s,t) = (n,r,t)

where s = (r,r) €S and t €T, The t coordinate in (x,r,t) desig-

nates the economy g(t) to which (x,r) corresponds.

'
i
13
|
b
|
'

The formal specification of {e(t)}t:T is completed by assigning

to each economy g(t) the following five components:

(a) A vector w(t) in Rl of aggregate initial endowments,

This vector is the sum of all consumers' initial commodity holdings.
Positive components of w(t) correspond to surpluses and negative compo-
nents to deficits, hence the net market value of w(t) at prices n is

aw(t).

*
(b) A market demand correspondence X=(.,t) : § —>(Rm*l) positively

2
homogeneous of degree zero in (n,r). This correspondence expresses total
consumer demand for all commodities at prevailing prices n and revenue
levels r. It is presumed defined even when some or all prices are zero,
although such values need not depict actual consumer behavior (see Section
5.1). The dependence of = on r reflects the influence of revenue
transfers on consumer purchase decisions. Positive components of & in

Z(n,r,t) correspond to commodity purchases and negative components to

sales, hence the cost of § at prices x is ~n§.

33

;. Boaisn -2
P, TR s

.




e ——————————————— . — i e T o e > —'ﬂ

(¢) A non-empty subset /A(t) of Rm+1 containing non-slack unit
production activities, Vectors b in /3(t) indicate technically feasible
input-output combinations. Each producer in the economy owns and operates
a subset of the activities in [J(t), but since all production is CRS, the
supposedly independent producers behave as if they were one consolidated
| producer, Positive components of b correspond to outputs and negative

components to inputs, hence given prices n, the before-tax profit earned

)
from operating b at unit level with market prices nx 1is ~xb.

In addition to [3(t) each economy is assumed to have available
m+1 unit disposal activities ~‘9m+1' Hence the total set of unit pro- |
duction activities available to economy ¢&(t) is Q@(t) = B(t) U (-Jml).
: Feasible production plans are constructed by selecting a number of unit
activities from @(t) and operating them at non-negative levels. Hence

the set of feasible production plans for ¢g(t) is the convex cone i

pos @(t). Any production plan B in pos Q(t) may be expressed as

(3-1.1) B = [-fo oo ..fM bM+l se® bN]y "
where N >0, -1 <M N y€RN+1 £. € 9 for 0 < j <M, and
- J - - s + 2 j m_._l - - 2

bj € A(t) for M+l < j <N. The before-tax profit realized from executing

plan B at market prices n is

N

M
B=- L nf, y(i) + % b ¥(d) «
j=0 j=M+1 }
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(d) A consumer tax function

U E(n,r,t) x ((r,r)} >R"".

ﬁ(-,.’t) :
(n,x) €S

For each price-revenue pair (n,r) in S and each consumption pattern

¢ ' Elx,r,t), Ot x,x, ¢E) is the vector of aggregate tax payments made
by consumers to the n-m revenue systems of economy ¢g(t)., Each component
of @ corresponds to a separate revenue system. As the notation suggests
consumer taxes may depend on which demand point is selected if demnands

are multi-valued, The breakdown of demand among individual consumers is
immaterial, however (see Section 3.6 for an extensioﬁ of the model which °

recognizes this distinction).

(e) A producer umit tax function y(.,.,t) : B(t) xS —>R“'m,
homogeneous of degree one in (x,r). For each price-revenue pair (x,r)
in S and each production activity b in A(t), r(b,x,r,t) 1is the
vector of tax payments made by producers to the n-m revenue systems of
economy €£(t) whenever activity b is operated at unit level. Each
component of y corresponds to a separate revenue system. Total producer
taxes are determined by taking the same linear combinatioms of unit taxes
that are taken to construct feasible production plans from unit activities.
Thus the vector of aggregate taxes assessed against the production plan
B defined in 3.1,1 is 2§=M+1 r(bj,n,r,t) y(3i). Slack activities
incur no tax liability,

The tax liability of a production plan may depend on the way the

plan is expressed in terms of unit activities, For this reason each
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production plan B in pos @(t) must be accompanied by a particular
representation whenever the plan appears in a tax context. The tax
liability is unaffected, however, by the combination of producers which
implement the plan. Hence the formulation does not cover the situation
in which two producers with different tax rates operate the same unit
activity. A straightforward extension of the model however, can handle
this case (see Section 3.6).

The dependence of § and y on (x,r,t) will frequently be
suppressed in subsequent sections by abbreviating ¢(§,u,r,t) and

r(b,n,r,t) as @(&) and y(b) respectively.

3.2, Definition of Equilibrium Graph

The concept of equilibrium for each economy g(t) 1is essentially
the same as for a conventional competitive economy. Consumers maximize
utility subject to a budget constraint, producers maximize after tax
profits, and all markets and revenue Systems clear. The concept of equi-
librium graph for the family {s(t:)}te r is a natural extension of
equilibrium for a single economy. An equilibirum graph consists simply
+f those points (n* r¥ t) in S x T for which (n*, 6r*) 1is an equilibrium
price-revenue system for economy ¢(t). Supply and demand imputations

accompanying equilibrium price-revenue pairs have been excluded from the

definition of equilibrium graph for sake of conciseness.
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3.2.1. DEFINITION, The triple [(r*,r*), &% 6 p*] where

= ¥* * * *
(n*, ) € S; n* 4 0; §* € E(x*, ¢, t); and B* = [-fo wo i bM*+1'°'bN*]y*
where N¥ >0, -1 <Me SNk, yx €R T £ €9, for 05j<m,
and b} € B(t) for M*¥+1 < j < N¥ is said to be a competitive equilibrium
for economy g(t) iff
(a) &* = p* + w(t);
N* -
(b) ™ = T y(b,, n*, r*, t) y¥(j) + P(E*, n*, r* t);
j=M*4l 3
N* % N
(c) EGE - 3 ME: L e Y(bj, “*’ r*, t) Y*(j) 2“*3 = jz‘—i 1 e Y(bj, “*: t*x t) Y(J)
= + =M+

for every P satisfying 3.1.1.

Relative equilibrium prices make little sense unless at least one price

is positive., 1In the standard general equilibrium model relative prices
lie on S and hence cannot all vanish, But here (r,r) lies on S so
the condition n* £ 0 must be added. Condition (a) requires that supply
equal demand in all commodity markets. Condition (b) requires that
revenue disbursements equal gross tax receipts in each revenue system,

1 Condition (c) requires that producers maximize after tax profits.

Consumer utility maximization is implicit in a Walrasian demand correspon-

dence. Walras Law for = will be stated in Section 3.k,

3.2.2. DEFINITION, The set of all (n*, r*, t) in S x T such
that (n*, r*¥) is an equilibrium price-revenue pair for g(t) constitutes

{ the equilibrium graph of the family [e(c)]ter.
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3.3. The Economic Algorithm

Now that the economic model has been specified, the next step is to
invoke the fundamental algorithm of Chapter 2 to compute approximate

equilibrium graphs. This will be accomplished by deriving from the

economic model a labeling L of S X [O,m) and a vector p in Rn+1

such that (L,p) form a proper pair. Before the labeling.can be defined,
however, a few technical restrictions must be placed on the economic
constructs introduced in Section 3.1, These technical restrictions will
be superceded by a set of economically meaningful restrictions in the

next section,

Throughout the present section the index set T is assumed to be

n+1l

[O,w), and an abstract pseudomanifold K on S x [O,w) is assumed

to be given.

3.3.1. ASSUMPTION. The initial endowments of all economies are

1

bounded above, i.e., 3 W E R s.t. w(T) <W.

b

3.3.2, ASSUMPTION. The demand correspondences of all economies

are bounded below, i.e., 3d € R™! st Z(s xT) > d.

3.3.3. ASSUMPTION, The combined production activities of the

economies spanned by any (n+l)-simplex T in Kn+1 cannot generate any

outputs unless inputs are provided, i.e., V ay, ..., @ in a(pz(r)),

the linear inequality system [ao S an+1]y.2 0, y>0 hasonly y =0

n+l

as a solution,
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3.3.4. REMARK, Since the disposal activities cannot be operated

at positive levels without consuming resources, it suffices to verify

in E(Pa(r))'

the above condition for non-slack activities a o i

0’ n+l

3.3.5. REMARK. Since the linear inequality system in 3.3.3 is

homogeneous, every similar linear inequality system [ao see a

y >0 is bounded for every b in R™,

n+1]Y =

For each t in T let
(3.3.6) e(t) = (1 + [Wll )e + d7 - w(t)
and
£3.3.7) 9 = c(t) + w(t) .
Then
(3.3.8) 8 >0 .
and
(3.3.9) E(S,€) + eft) >0 . %

The last inequality follows from the definition of ¢(t) and from
Assumptions 3.3,1 and 3.3.2,

Now choose & in R™™ such that

(3.3.10) A >>0 and eA <1 ,

Define p in Rm'l by




‘m
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(3.3.11) P >>0 .

A

The vector p will serve as the right hand side (RHS) of the linear

inequality systems in the economic version of the fundamental algorithm,
Enough structure has now been imposed on the family {&(t)}te.r
that an economic labeling L of S x [0,») can be defined.

3.3.12, DEFINITION. Define L : S x [O,x) I

ey if s = (n,r) 1lies on a facet of S
{ and j 1is the position of the last

zero in the first run of zeros in sj

[ -b ] if (n,r) >0 and nb - er(b,r,r,t) >0,

y(b) where b € A(t).

g + c(t) if (n,r) >0 and nb - er(b,x,r,t) <O
¢(§)-r#ﬁ] for all b € B(t), where § € Z(n,r,t).
In order that L be uniquely defined for each (rn,r,t) in S x [0,=),
a specific b and a specific & must be chosen in the second and third
cases. In practice some tie-breaking procedure such as lexicographic
minimization must be employed to prevent ambiguity in the evaluation of
L. -

Points in S x [O,m) which require the third case of the definition j

of L are called demand-labeled points, Those falling under the second

case are called production-labeled points,
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Occasionally in subsequent sections it will be convenient to parti-

tion the label L(v) into

[ L,(v)
L,(v)

Bk d L(v) € R™ ™, Similarly the canonical vector

where L;(v) €R

e, will be partitioned into [g] for 0<j<m and [:] for

J
ml < j<n.

The idea behind the L1 portion of the labeling is due to Scarf,.
If some good is free then the label becomes the negative of the disposal
activity for that good. If no goods are free and some activity earns a
positive profit, then the label becomes the negative of that activity.
If no goods are free and no activity earns a positive profit, then the
label becomes a demand point. A technical difficulty arises when many
goods are free, but this is overcome by the manner in which ej is
selected,

The L2 portion of the labeling was originally conceived by Shoven
and Whalley., The idea here is that revenue flows can be made to balance
just like commodity flows by extending the production labels to include

unit producer taxes and the demand labels to include consumer revenue

receipts net of taxes,

The groundwork has now been laid for the main result of this section.

L1




3.3.15. THEOREM. The pair (L,p) and the pseudomanifold Kn+1

satisfy all the conditions required for the successful operation of the
fundamental algorithm, namely (L,p) is a proper pair and Assumption

2.3.4 holds.

Proof: The vertices of S x (0} are (eo,O), St (en,o). The labels

corresponding to these vertices are e e respectively,

n’ eO’ g eixp 9pg

i Clearly the positive vector p 1lies in the cone spanned by these labels,
Hence co is (L,p)-complete.
Now consider any facet of S x [0,») other than S x {0}, e.g.,

the facet Fj for 0 < j <n. The only possible labels for points in

F are the coordinate vectors e

]
in Fj‘ If 1< j<n then the (j-l)-st coordinate of s exists.

07 **r e Consider a point (s,t)

Suppose s(j-1) = O, Then s(j-l) cannot be the last zero in a run of

zeros since s(j) = O. Suppose s(j-1) > 0. Then s(j-1) does not

appear in any run of zeros. 1In either case L(s,t) £e If j=0

j-r
? then s(n) cannot lie in the first run of zeros in s because s £ 0,

Hence L(s,t) £ e . Whatever the value of j, one of the coordinate

vectors cannot appear as a label for Fj' Since p >> 0, the facet Fj

is not (L, p)-complete.
All that remains is to verify Assumption 2.3.4. Let
n+1l
T = [vo, wony vn+1} € K ' ~. By suitably ordering T the system

L(T)y = p, ¥y >0 may be displayed as

-

P 1
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0++0 f ot f -b aiisl =b g +c(t, )
Hel J 1 1
(5.5-1") [ + 1 I+1 J+ J+ i
8 "t 8g 0t 0 w(bpy) cttv(by) B(E) - Ty 4
o
[ Y,
gt gn+1 ® c(cn+1) ] Y2 s [ 8 ]
T gj(gn-q-l) i l:n+1 *4 }'3 &
y
e
H+l I-H J-1 n+l-J
where Yy € R+ y Yo € R+ ’ y3 € R+ s By € R+ ,and -1 <H<I<J<n+l,
Any (yl, Yo» yj, yh) satisfying 3.3.14 must also satisfy
Al y2
(23388 | B oty Pra e Byl £ £ 2y ¥p20, 7320
3

because of 3.3.9. By Remark 3.3,5 the set of (ya, y3) satisfying 3.3.15

is bounded. Hence if Yy, satisfies 3.3.14 the expression 4
[§J+1 + c(tJ+1) oo §n+1 + c(tm_l)]y)+ is bounded. By 3.3.9 each vector

for J+1 < j < n+l is non-negative and contains a positive

component, so Yy must be bounded, The boundedness of (ya,yB,yu)

satisfying 3.3.14 implies the boundedness of [go see gu]yl, which in

turn implies that y, 1is bounded. Therefore Assumption 2,3.4 holds. O

3.4. Limiting Behavior of the Algorithm

The theorem of the previous section guarantees the existence of
an infinite sequence of distinct, adjacent, (L,6p)-very complete n-simplices

in S x [0,=)., The connection between this sequence and the equilibrium
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graph of the family (g(t)} remains to be demonstrated, Unless

te T
more structure is imposed on (s(t)}ce T and on the pseudomanifold KP+1,
the sequence may well be economically meaningless. Furthermore the model
with T = [0,~) is not the model of ultimate interest, Rather it serves
as a tool for analyzing families of economies defined on T = [0,1].
These are the models toward which this study is primarily directed.

In this section enough restrictions will be placed on [e(t)}te (0,1]
to insure that the family possesses a non-void equilbrium graph., Then
[e(t)]te [0’1] will be copied onto the cylinder S x [0,=) 1in such a
way that the conditions of the previous section are met, The sequence of
n-simplices generated by the fundamental algorithm will then be mapped
back to S X [0,1], where the images will be shown to cluster around a
connected subset of the equilibrium graph of {e(c))te [0,1]"

Throughout the remainder of this chapter the index set T is assumed

to be [0,1].

3.4.1, ASSUMPTION. Initial endowments w(t) vary continuously
in ¢t.
This is the first of many assumptions stemming from the notion that

[e(t)}te,r is generated by a continuous deformation.

3.4.2. ASSUMPTION. The market demand correspondence = satisfies
the following conditions:
(a) = 1s w.s.e, on S x T;

(b) Z=(v) is convex for all v in S x T;

L
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(e¢) =(-,t) satisfies Walras Law for all t in T provided n >> 0,
i.e., V & € Z(n,r,t), n€ + ef(§,x,r,t) = nw(t) + er;
(d) = 1is bounded from below on S x T;

(e) As (m,r,t) - (n*, r*, t*) in S x T with (r,r) >>0, if

lim sup diam(=(x,r,t) U {0}) = @, then lim dist(=(nx,r,t), 0) = o,

’

Upper semi-continuity of = with respect to t 1is related to the
deformation interpretation of the model., Parts (b) and (c) and upper
semicontinuity w.r.t, (n,r) are standard properties of demand correspon-
dences arising from utility maximization subject to a budget constraint,
Assumption (d) is regularly employed in conventional general equilibrium
models, e.g., [2] and [S51. Unlike conventional treatments of the model,
however, no truncation arguments (or boundedness assumptions in the case
of Scarf [13]) are required for the demand correspondences considered
here. This advance is made possible by condition (e) which rules out
pathological singularities of = on the boundary of the price-revenue
simplex. As long as condition (e) is satisfied  global feasiblity

constraints will be automatically enforced by the algorithm,

3.4.3. ASSUMPTION. The non-slack production activity correspon-
dence /3 satisfies the following conditions:
(a) B 1is continuous on T;

(b) B is a bounded correspondence.

Part (a) reflects the deformation interpretation of the model. Part (b) E
is a technical convenience and has no effect on production technology

since unit activities may be operated at any non-negative level, :
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3.4.4, ASSUMPTION. For each t in T there exists €, >0 such

that for all a,, ..., a .y in TN [t-et, t+€t])’ the linear

inequality system [ao siss an+1]y_2 O, y>0 hasonly y=0 asa
solution, This assumption captures the notions of continuity between
economies and realism of production technology. It says that the gombined
production activities of economies sufficiently near a given economy

cannot be operated at positive levels unless inputs are supplied,

3.4.5. REMARK. Analogues of Remarks 3.3.4 and 3.3.5 apply to

Assumption 3.k4.k4,

3.4.6. ASSUMPTION. The consumer tax function @ satisfies the
following conditions:
(a) 82>0;

(b) # is continuous on U =(s,t) x {(s,£)};
(s,t)€ESxT

(c) P vanishes when x = 0;

(d) P 1is affine on =(s,t) x {(s,t)} £for fixed values of (s,t).

Part (a) rules out the possiblity of tax revenue flowing from revenue

handling agents to consumers., Continuity w.r.t. t in part (b) reflects

the continuity of change between economies. Part (c) relates the taxes

paid by consumers to the value of their tramsactions. Part (d) and the

remainder of part (b) are technical assumptions required for the main

existence proof. Note that (d) becomeg superfluous when demands are

single valued. Despite these restrictions the function f encompasses i

a wide class of possible tax schemes, including all those proposed in

(15].
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3.4.7. ASSUMPTION. The producer unit tax function y satisfies
the following conditions:
(a) r20;
(b) y is continuous on U A(t) x S x {t}.

teT

(¢) r vanishes when = = 0.
Part (a) permits tax revenues to flow from producers to revenue handling
agents but not vice-versa. This precludes the possibility of using r
to model direct producer subsidies but is necessary for technical reasons.
The t component of part (b) again reflects the deformation aspects of
{6(t)]t€.r. The remainder of part (b) is a tech ical assumption. Part (c)
relates the level of producer taxes to the value of producer tramsactioms.

Some elementary consequences of the preceding assumptions are con-

tained in the following lemma.

3.4.8. LEMMA. The following sets are compact:

(a) B(t) for each t in T;
(b) &T);
(¢) AT N [t-¢,, tre.]);
(d) U B8(t) x8 x {t}.
teT

Proof: Since -4 , is compact, part (c¢) follows once A(T N [t-e:, t+et])

is shown to be compact. But this set is just u B(u),
u€T N(t-e,,t+e, ]
which is compact by Lemma A.l. Likewise /g3(t) = U EKU),
ug TN {t}

AT) = U A(u), and the union in (d) are compact, O
u€T

k7
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Now construct a new family of economies [e'(t')}t,elo ) by
’

letting &'(t') = g(h(t')) where h : [0O,=) = (0,1] is defined by

0, o<t<oar
(3.4.9) h(t) = t-i 21 < i<t <i+l and i even
fel-t , 2I<i<t<i+sl and i odd

for some I in Z+. Figure 3.4.1 illustrates how h copies the unprimed

family of economies onto S X [O,m) to form the primed family.

=1 2I+3
e(t)

t=0

= 2I+2
e(t)

t=1

= 2I+1
e(t)

t=0 21
€(0)

0

S x [0,=)

Figure 3.4.1. The family ('(t')} g .y
b
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In view of 3.4.1 and 3.4.2(d) the family (g'(t )}t,e[o,“)
satifies Assumptions 3.3.1 and 3.3.2, Before Assumption 3.5.3 can
be verified, an additional restriction is required om the pseudomanifold

Kn+ 1 !

3.4.10. ASSUMPTION. KP+1 becomes increasingly refined as t - w

i.e., diam T -0 uniformly in T € Kn+1

as 92( T) -,
3.4.11 PROPOSITION. Provided the integer I in 3.4.9 is sufficiently

large, the family ({g'(t')} satisfies 3.3.3.

t'€[0,eo)
Proof: The collection [(t-ec, c+€t)}t€T forms an open covering of T.
Let & be a Lebesgue number for this covering (recall that T = [0,1]).

1

Choose I sc large that for all T in K™ satisfying p2( ) N [21,%) £,

diam T < 8. Then for each T in Kn+1 there exists t in T such that

h(pa(r)) cTN (t-e t+et). In view of Assumption 3.4.4 Assumption 3.3.3

c’
holds for [e'(t:')}.:,€ [0,w)° m

All the Assumptions of Section 3.3 have now been verified for
{e'(t')}t,€ [0,m)° Hence the economic version of the fundamental algorithm
developed in that section can be operated with the primed family to
generate an infinite sequence (ok) of distinct  adjacent, completely
labeled n-simplices in S x [0,=).

In order to analyze the implications of the sequence (pk) for the

unprimed family of economies, it is necessary to map the sequence (pk)

k9
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back to S x T via the function 1, x h : S x [0,©) »§ x [0,1], where

k

S

IS is the identity on S. Denote by ¢ the image of ok under this

mapping. Assign to ok the label system associated with ok, and

denote this label system as L(ak)yk = P, yk‘z 0.
The net effect of copying the unprimed family of economies onto

S x [0,=) and then transforming back to S x T is the same as if the

1

pseudomanifold K™™' had first been mapped onto S x T by 1, x h,

S
and the development of Section 3.3 had taken place there. Hence expres-
sions 3.3.6 through 3.3.11 apply for the unprimed family.

Before stating and proving the main result of this section, the
uniform boundedness of the label systems L(ak)yk = p, yk‘z 0 will now

be established. The proof resembles the boundedness argument in Theorem

3.3.13.

3.4.12, LEMMA, Let t €T and St = (o € (ck) s pa(c) = G

n [t-et, t+e,1}.  There exist bounded sets Y , Z < pt+!

" which contain,

respectively,6 every solution y to every linear inequality system

L(o)y =p, y20 for o in §_, and all vectors

y(3)

appearing in these systems,

Proof: For any o in St the label system L(o)y = p, y >0 can be

displayed as
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(3.4.13) [ @ s gy wn By By o xe R o ealt, )
Bg *" By O 0 y(h ) - w(by) ¢(§J+1) =
[v1]
vois §n+c(tn) Yo 0
p(en)-:nA] 7 [ A ]
Lyu.
el I-H s "

+ n-
where y1€R+,y2€R+,y5€R+ ,yh€R+,and - 1<HL<I<J<n.
Because of 3.3.9 any (yl, Yo, ys, yh) satisfying 3.4.13 must also

satisfy

(5.4.24)  [-fg .y -+o -Ep by, +e Byl [

By 3.3.8 and 3.4.5 any system of the form 3.4.1l4k with matrix columns

taken from @(T N [t-¢ t+€t]) is feasible and bounded. Therefore the

t?
hypotheses of Lemma A.,3 are satisfied with g = (-6} and

cC=aTn [t-e:, t+€c])’ which is compact by 3.4.8(c). Hence there

exists a fixed bounded set containing all solutions to all systems of

the form 3.4.14,

The compactness of @(T N [t'ec' :+et]) and the uniform boundedness
of (ye,y3) imply that [§J+1 + c(tJ+1) g R c(tn)]yh is uniformly
bounded over all ¢ in St‘ (So, too, are each of the non-negative terms
(§j + c(tj)) y(j) for J+1 < j < n.) Using a graph projection argument
similar to the one in Lemma A.1, the set U =(S,t) + c(t) is readily

teT
seen to be closed, and by 3.3.9 this set does not contain 0, Hence
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there exists a neighborhood of 0 with f -diameter ¢ >0 which misses
the union. Any vector £ + c(t) in Z=(S,t) + c(t) for t €T must,
therefore, contain a positive component of magnitude at least €, and
this places a uniform upper bound on the components of yh satisfying
3.4.15.

Since P and r are non-negative, the terms r(bj) for I+1 < j<7J

and ¢(§j) -r. +48 for J+l1 < j < n are uniformly bounded below over

3
all systems 3.4.13 for all ¢ in st. This fact together with the

uniform boundedness of Y3 and y, implies that both [go oo gu?yl

and [0(§J+l) - Tyt A e 0(§n) - T + A]yh are uniformly bounded over

all systems 3.4.15, The uniform boundedness of Yy follows from that

of the first expression, and the uniform boundedness of (¢(§j)-rj«ﬁ)y(j)

for J+1 < j <n from that of the second. The set Yc may be taken as »
the cartesian product of the sets which uniformly bound Yy ya, y3

and ¥, The existence of Zt is assured by the uniform

boundedness of c(tj) y(j) and (A-rj) y(j) for J+1 < j<n,

together with the uniform boundedness of the weighted labels containing

these terms, a

The following theorem contains the principal result of this section,
namely the clustering of the sequence (ok) around a component of the

equilibrium graph of {&(t)}

tel"
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3.4.15. THEOREM. The set A of limit points of (ck) in

S x [0,1] 1is a connected subset of the equilibrium graph of [s(t:)]':€ T

and it meets both S x {0} and S Xx [i]. Furthermore for each

(n*,r* t) in A and each subsequence ak' = (n*, r* t), an equilibrium
consumption plan &% in E(n¥* ¥, t) and an equilibrium production
plan B* in pos @Q(t) may be obtained by taking linear combinations of
limit points of the labels L(ok'), using weights which are limit points

of the weights yk .

Proof: The proof is rather long and complicated, so it will be broken

down into a series of nine steps.

Step 1: A 1is connected and meets both S x {0} and S x {1}.
Since the sequence (pk) © S x [0,») consists of adjacent n-simplices, »
each ok contains one vertex missing from pk-l. Let vk denote the
image of this vertex under the mapping 1S X h. Then clearly the limit
points of (vk) coincide with the limit points of (ak). According to

Corollary 2.4.2, pa(pk) 2o as k - o and hence by Assumption 3.4.10,

’
diam ok -0 as k -x, Therefore (ok) eventually crosses each slice

S x (1) for 1i € Z+, and as i oo, dist((ck), S x {i}) - 0. Corresponding
properties of the image sequence (vk) are Hvk+1 - ka -0,

diﬂ(vk, S x (0}) -0, and dist(vk, S x {1}) - 0. Applying Lemma A.L

with X =8 xT, A =8 x (0}, B =5 x (1}, and (xk) = (vk) yields the

desired result,
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Step 2: Extraction of convergent subsequences.

Let (n*, r*¥, t) in A be given. Select a subsequence of (ok),
for convenience also indexed by k in 'Z+, such that crk = (n*, ¢ t).
Since diam ork - 0, the subsequence may be chosen so that

k as [vl(;, > ony v:} and consider

Pl () etn [t-e, t+e.]. Write o
the label matrices L(ck) = [L(vl;) L(vﬁ)'l. For 0<j<n and k
in Z+ either

- k

(1) Ll(vi) € (0},
(ii) Ll(vj) € Jmo-l’
(iii) Ll(vlj() € -B(T), or

(1v) LI(VI;) €=(S x T) + <(T).

Hence for each 0 < j < n, the vector Ll(vl;) must lie in one of the
above sets for infinitely many k in 2 . In cases (i), (ii), and (iii),
the containing sets are compact, so every infinite sequence of labels
lying in one of them has a convergent subsequence within that set.
Beginning with j = O and continuing until j = n, one may extract

successive subsequences of (ck) until there remains a subsequence, for i

convenience also indexed by k in Z+, such that for each 0 < j <n

precisely one of the following four statements holds:

@ o
(b) Ly(vy) = £, = £, €39

T T
(c) Ll(v:j:) b - -b% € -A(t);
() 1+

k

3
%

n

ky _— k k k k
+ c(tj) €-—(ﬂj, Ty tj) + c(tj).

e

5k
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The inclusion relation in (c¢) follows from the u.s.c. of 3. Later it

will be shown that the labels in (d) also contain convergent sub-

sequences,

By suitably ordering the elements of each ck one may assume that

(a) holds for 0 < j <H,

(b) holds for H+l < j

IA
-

(c) holds for I+1< j<J, and

(d) holds for J+1 < j<n

where -1 <H<I<J<n. By extracting further subsequences of (ck),

the following can be guaranteed

for convenience also indexed by k in Z+,

to hold:
(a') Le(vl;) " gl; - g; SE for 0<j<H. .
Also, by definition of L2, H and I
‘ k
(b') L2(vj) =0 for H+1 < j < 1.
By the continuity of v,
(c') Lz(v‘j‘) = r(bl;) -»r(b;) for T+1<j<J.
(The symbol r(b;) is an abbreviation for r(b} L W ‘ 1

Since pa( (ak)) TN [t:-et, t+et], Lemma 3,4.12 insures that the
solutions yk to the linear inequality systems I.(ak)yk =p,¥y20
lie in a fixed bounded set, as do the terms §]; yk(j) and p(gl;) yk(j)
for J+1 < j < n. Hence there exists a final subsequence of (ok), "1

along which

also indexed by k in Z+

)
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(e) Elj‘ yk(J) —>E; g g%} for Jsl <3< ;
(e') p(g‘j‘) y( 3) -»b’; S for J+1< j<n;
*
y
k * (o} n+l * J+1 * n-J
(£) y -y =[y*]€R+ , where y0€R+ and ylek+ .
1

The end result of this extraction procedure is that along the final
subsequence (Gk), the label systems L(ck)yk = p, ykz O converge

componentwise to the system

*

¥* *

0 ... O fu+1 e fI ..bI+1 oo bJ 5%
Gade | ., I 5

g o<e By @ees G0l ) s By

[ E; ] [ C(t) ] . [ 9 ] : |
* + y (j) = ) y 2 O P
+1 P, A-r* A r

J

+

“GMp

j=

The remainder of the proof consists of showing that the triple
L % I «
[(n*, ), &% p*] where &* = 3 E. and B* = - £ y*(3)
3 j=d+l J j=H+1l

+ L b; y*(j), constitutes a competitive equilibrium for economy e(t).
j=I+l

Step 3: ¥ f;=o for H+l < j < I;

* *
n*bj-er(bj)?_o for I+1 < j<J.

k k k
£, = 0. Since
R gt 5
*
and fj = fj’ it follows that r* fj = 0, For each k in Z+ and

I+1 < j £ J, the definition of L implies “l; bl; - e-r(blj() > 0. Letting

s

For each k 1in Z+ and H+1 < J<I, « - ¥

k o and invoking the continuity of 1y, this inequality becomes

n* b'; - er(b’j) > 0.
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Step 4: J <n.

Suppose otherwise. In view of the previous step and Assumption

3.4.7(a)

*
n*bjzer(b’j’)zo for. W1 123,
Multiplying 3.4.16 by (n*, 0) and applying the first part of Step 3
yields
J *
- L > by y*(3) = n*6
j=I+1
which is a contradiction since the RHS is positive and the LHS (left hand

side) is non-positive.

Step 5: After-tax profits in economy g&(t) are maximized at prices and

revenue levels (n*, r*¥) by the production plan

I - J %
p* = - £y y*(3) + L by )
j=H+1 j=I+1 J

and these profits are exactly zero.
Since J < n, there exists j' in (J+1, ..., n} such that V
k€2

+?

k k k
Ll(vji) = §j| g c(tj') .

o7
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Let b in p3(t) be given. By the l.s.c. of £ there exists a sequence

k

(b;,) such that bj' € EK:?,) and b?, —-b as k -»®, By definition

of L,

k

k k
i Ty bj' - ‘Y(bj-).f o,

so letting k -« yields
(3.4.17) n*b - er(b) <0 .

Now consider the arbitrary production plan B defined in 3.1.1.
At prices and revenue levels (n*, r*) the after-tax profitability of
B 1is
N

M
- L n* fj ¥(3) + [ﬂ*bj - eY(bj)] 5
j=0 j=M+ 1

which is non-positive in light of 3.4.17.

The results of Step 3 together with 3.4.17 imply that the after -

tax profitability of each unit activity in p* is zero. Therefore the
profitability of p* exceeds that of any other production plan B.

Condition (c¢) in the definition of a competitive equilibrium has now been

verified.
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H n
Step 6: L y¥(§) =0; T yx(]) = L
j=0 j=J+1

Multiplying system 3.4.16 by (n*,e) and applying the zero profit

results of the previous step yields

H n
(3.4.18) T oy*(3) + T [(x* c(t) + ed - er¥) y*(j) + ¥ z*j‘ B
j=0 j=J+l 4

= %0 + &b

For J+1 < j <n the definition of L insures that nljc >> 0, hence

Walras Law [3.4.2(c)] implies

15 K epe]) v = A we) v v o] YD)

Letting k >« this equation becomes

* g’; * e¢§ = % w(t) y*(j) + er* y*(j) .

Solving for n* w(t) y*(j) and replacing the last three terms in brackets

in 3.4.18 yields

H n
(3.4.19) L oy*(3) + (n*0 + &) Y y¥(j) = 1% + & .
j=0 j=J

.
[}

Now let q = sgn r*, For sufficiently large k, q < sgn rl;, and hence
*
agy = 0 for 0 < j <H. Multiplying 3.4.16 by (O, e-q) and subtracting

the resulting equation from 3.4.19 yields
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J n

- T (e=q) 1(B)) yX(1) + T [(x%6 + &) y¥(1) - (e-q) B}
j=I+1 j=Jd+1

= %0 + @ .
By the non-negativity of y and ® this implies

n n
(1%6 + @) L y¥(§) 26 + @A, or L o FHII2 L .
j=J+1 j=J+1

H
Combining this inequality with 3.4.19 implies 2 y*(j) = O. Dividing
3=0

3.4.19 by %6 + eA then establishes the desired result.

S

Step 7: The sequences (§§) for J+1 < j < n contain convergent
subsequences,

Suppose (g?,) is unbounded for some j' € {J+1, ..., n}. Then
there exists a subsequence along which Hg?,"-em. According to
Assumption 3.4.2(e), the other demand points §§ for J+1 < j<n

7t

must also diverge to +» along this subsequence. Since §

3
it follows that for J+1 < j <n, yk(j) — 0 along the subsequence,
n
contradicting the fact that Y, 9%(3) =1,
j=J+1

Consequently every sequence (§§) for J+1 < j < n is bounded,

and thus contains a limit point & By extracting a further subsequence

*
j.

of (ok), also indexed by k € Z+ the sequences (§§) may be considered

s

to converge to their limit points, i.e.,

*

k R
§j -,gj E=Z(x, r, t) for J41 < jJ<n.

rw
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The inclusion relation follows from the u.s.c. of =, Since g is

continuous on its domain, it also follows that ¢(§§) -»¢(§§, n*, r*, t),
henceforth abbreviated ¢(§;). The weighted label limits E; and ﬁ;
may now be factored into E; = §§ y*(j) and 5; = ¢(§§) y*(j) for

J¥l < j < nm.

Step 8: n* £ O.

Suppose n* = 0., Then qr¥ = 1 (recall the properties of gq
from Step 6). Also, Assumptions 3.4.6(c) and 3.4.7(c) require that
¢(g’;) =0 for J+1<j<n and r(b’j‘) =0 for I+1<j<J. Multiplying

system 3.4.16 on the left by (0,q) yields

n
(-1 + @) % y*(3) = &,

which is impossible since y* >0 and 0 < @ <1,

Step 9: Verification of equilibrium conditions 3.2.1(a) and 3.2.1(b).
n
Since Y, y*(j) =1 and E(n*, r¥, t) 1is convex, the demand
j=J+1
point :
i
n n
=% * P
e Lo b= L8, 7Y &
Judsl I Jedil

belongs to =(n*, r* t). The first m+l equations of system 3.4.16

reduce to
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I * J *
35‘11 fjr*(j)-j?flbjr*(j)+§*+c(t)=w(c)+c(t).
=0+ =1+

Subtracting c(t) from both sides yields equilibrium condition 3.2.1(a).

Assumption 3.4,6(d) implies that

| no R
i Tose) ) =8 TSy = e
j= +1 j=J+1

Thus the last n-m equations of system 3.4.16 become

J *
T r(b)) yH(3) + B(8%) - X £ B =B,

j=I+1

Subtracting & from both sides yields equilibrium condition 3.2.1(b).

The proof of Theorem 3.4.15 is now cumplete, O

Figure 3.4.2 illustrates the relationship between the set A and
the equilibrium graph as a whole. The graph in the figure consists of

arcs AB, CDE, DF, GH, JX and loop I. The set A may coincide with the

arc AB, with the arc CDE plus any subarc of DF emanating from D, or

F ' s, x [0,1]

Figure 3.4.2. A complicated equilibrium graph,
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with the arc CDF plus any subarc of DE emanating from D, One would
expect equilibrium graphs encountered in practice to be much simpler than

the one illustrated here and hence more nearly coincident with A.

3.5. Finite Approximation of Equilibrium Graph

The purpose of this section is to show that an economically meaning-
ful approximation to the equilibrium graph of {8(!:)]t€ T ¢an be constructed
from a finite segment of (ck) whenever the diameters of the sets com-
prising the segment are sufficiently small. Such approximations are
essential if the algorithm is to have any practical value, since cluster
points can rarely be computed. The role of the theorem in the previous
section is to insure that the approximations proposed below relate to
something which actually exists. Two additional restrictions on the
market demand correspondence = are needed to guarantee certain desirable
properties of the approximations. These restrictions lead to regularity
conditions analogous to uniform continuity for = and the consumer tax
function .

Recall from Section 3.4 the sequence (pk) of n-simplices in

S x [O,w) generated by the economic algorithm, Consider any block

S x [i, i+1] where 2I < i. Since pe(ok) - o, there exists a last

simplex gE which meets S x [O,i] and a first simplex pk following

oE which meets S x [i+l, «).
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3.5.1. DEFINITION. The set A, = k§k 9(d%), where 8(c%) 1is
the set of demand labeled vertices of ck, 1s defined to be the i-th
level approximation to the equilibrium graph of {e(t)]ts T

Two criteria must be satisfied before the finite set Ai can be
considered a reasonable approximate equilibrium graph. First Ai must
cover the continuum of economies, and second the price and revenue
components of points in Ai must induce economic behavior resembling
equilibrium, The economies may be considered well-covered when the
index of every economy lies close to a point in P2(Ai)‘ Economic
behavior resembles equilibrium when supply is close to demand and unit
profits are nearly maximized. The theorem below shows that for simplices
ak of sufficiently small diameter, the sets s(ak) are non-empty, and
the price-revenue levels of points therein induce approximate equilibrium
behavior to any desired accuracy, Thus by choosing i sufficiently large
(so that the diameters of the sets o* are sufficiently small) the
set Ai can be made to approximate a component of the equilibrium graph
of (8(t)}t€,r arbitrarily well. As always, however, with equation
solving techniques of this type, the location of the true equilibrium
graph can never be determined precisely unless extra regularity conditions
are imposed on the model.

The additional restrictions on = required for the proof of the
approximation theorem are rather technical and non-intuitive., They are
motivated, however, by the consumption example discussed in Sectiom 5.1.

Their main purpose is to induce a type of uniform continuity on =. This

is particularly difficult since = may very well be unbounded (over

an
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a compact domain). It is, therefore, necessary to restrict = to subsets
of S x T where its size can be controlled.

To this end let g(a) = (v € S x T : dist (5(v), 0) <a}. This
set is simply the projection onto S x T of the compact set formed by
intersecting the graph of = with the closed zm-ball of diameter Q,

and is hence compact,

3.5.2. ASSUMPTION. For each a > 0 there exists a closed subset
H(a) of g(a) satisfying

(a) @) contains all points (x,r,t) in g(Q@) with = >>0;

(b) = 1is bounded on HQ);
(¢) = is l.s.c. on gQ).

3.5.3. ASSUMPTION. Diam_ =(x,r,t) is bounded over ({(m,r,t) € SXT : |
n >> 0}.

The latter assumption is reminiscent of condition 3.4.2(e), and
in fact when combined with 3.5.2 implies that condition (see Remark
3.5.16). All other conditions and constructions of Section 3.4 are assumed

to remain in effect here.

3.5.4. THEOREM, Let A,u >0, Then 3 8 >0 such that any
n-simplex ¢ in (ck) and its associated label system 3.4.13 exhibit

the following properties whenever diam, o <8,

1

(a) Demand-labeled vertices exist, i.e., J <n in 3.4,13.

«Cey

g
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Let (m,r,t) € ¢ be such a vertex.

(b) There exists an actual production plan B in pos @(t) that is

within f -distance u of the pseudo-production plan

)
B = [.fH+1 wasrml bI+1 et bJ]
73

constructed from 3.4.13 and such that at prices and revenue levels
(n,r), the after-tax profitability of any unit activity in @(t)
exceeds the after-tax profitability of any unit activity used in

E by at most .

(¢) There exists an actual demand point & in =(n,r,t) that is within

z“-distance p of the pseudo-demand point

n n

g T gl % 8, g
j=J+1 j=J+1

constructed from 3.4.13, and within £ _-distance 2u of the

aggregate supply B + wit).

(d) Actual tax receipts genezated by B and & are within zm-distance

p of pseudo-tax receipts

J n
() v(1) e T AE) ¥(3)
j=I+1 j=J+1

derived from 3.4.13, and within z“-dis:ance 24 of actual revenue

levels r,




x
|
|

Proof: As in Theorem 3.4.15 the proof is broken down into a series of

steps.

Step 1: Selection of uniformity constants.

The family [(t'et’ t+€t)}t€1r forms an open covering of T,

Let [(tj-e:j, cj+etj)]j€ g

a Lebesgue number for this subcover.

sets Y and 2Z
t t
j j

be a finite subcover of T, and let B be

0]

By Lemma 3.4.12 there exist bounded

for each j in j which contain, respectively 6 all

solutions y to all systems 3.4.13 formed by choosing o in St , and

¢
[z ]Y(Z)
B¢ ,)

all vectors

for J+1 < £ < n appearing in

(1) C, >0 be an ¢ -bound
(ii) €, >1 be an £,-bound

(iii) C€; >0 be an 4 -bound

(iv) Ch.z 1 be an £ -bound

(v) C5 >0 be the bound on

(vi) Cg > (n+1)C5 +C. + 1;

5
(vii) C7 >0 be an £ -bound

Choose € > 0 to satisfy

these systems,

on T);
on U Yt g
i€g j
on U Zt ;
&g
on <(T);

3

Let

diam; = postulated in 3.5.3;

on # over

=(v) x {v}. (cC

vegxcs) 7
exists because of 3,5.2, Lemma A.1l, and the continuity of @.)
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min, p(1i)
i 1 1
(viii) e < 2 <(n+1)03 TG C -1>5

)
he(mxi p(i) + e + Ch + C5 + C6 + Cl)
min, p(i)

(ix)

<u.

Choose € > 0 such that

(x) € <N2;

(x1i) €, < e/Ce.

Since y 1is continuous on the compact set U &(t) x S x (t}, there
teT
exists a l-= uniformity comnstant &, for (v, €)- (See A.6 for the

definition of a p-q uniformity constant.) Choose ¢, > 0 to satisfy

2

(xii) e, < 51/2,-
(xiii) €5 < “/Cei
(xiv) €5 < N2 - €5

(XV) €2<€/c2' el.

Since @ 1is a continuous bounded correspondence, Lemma A.5 guarantees

the existence of a 1l-1 uniformity constant 62 for (85, 52). Let

65 > 0 be chosen so that
< =
(xvi) €3 6/02 €-
Since § is continuous on the compact set u Z(v) x {v}, there

veL(Cy)

exists a l-o uniformity constant 53 for (P, ej). Choose €, >0

to satisfy
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(xvii) €, <u;

(xviii) < 53/2;

€y

(xix) < e/Ce.

€y
Let 5h>° be a 1-1 uniformity comstant for (=, -ih) on _.§(C6).

Choose €5 > 0 so that

(xx) 55 < e/C2 =€)

and let 65 >0 be a 1l-o» uniformity constant for (¢, es).

Let 56>0 be a l-o uniformity constant for (=,1) on _;(66).

Finally choose 8 > 0 to satisfy

(xxi) & < 84s
(xxii) & <8,/2;
(xxiil) B <¥,;
(xxiv) & < 83/2,-
(xxv) & < 6h/2;

(xxvi) & <B&_;

5)
(xxvii) & < 86;
min, p(i)
(xxviii) 8 < —m——
i
l-eA
(xxix) © < —_—2(n-m+1)’

(xxx) B8 <‘CL1 ()\/2 = 52);

(mi) e} < 1 F c3 + Ch + ]FQH . 2( n_m)’

he(max, p(i) + e + 1)

1
(xxxii) O <-C—2 (u -

min, p(1) ) :
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Consider any ¢ in (ak) with diam, o < %, Recall that
o= ((rgy Tgs Eg)s «vey (my, Tp, t)). Let (m,r,t) be any point

in conv g. Put q = sgn(r-Se)+.

Step 2: ag; = 0 for 0<j<H and 76 + @ >-; min, p(i).

Since ”r-rjlll <® for 0< j<n, whenever q(i) =1, i.e.,
r(i) > 8, then rj(i) > 8-5 = 0., The first assertion follows from the
definition of L.

1If 9=0, f.e., rslse, then
s
el = 1 - el
>1- (n-m)d

> by (xxix) .

[V I

Consequently,
10 + @ > [xll; min, p(1)

1 s
>3 ming p(i) .

Since the inequality holds trivially whemn q > 0, the second assertion |

is also established.

Step 3: Construction of 5

In view of (xxiii) there exist activities T:'j in At) for

I+1 < j £ J such that l|’f:o"j - bj“l < €5 The production plan

70

11
1 .
Lj‘




>

DY SR — i e < ‘A'ﬁ-a- R S deilinpsumiene —

B = [-fﬂ+1 aisls. -fI bI+1 ese bJ]

belongs to pos @(t) and satisfies

(3.5.5) IB-ll_ < -8l

1 J
- “(- b7 £ y(3) + % B, y(3))
j=Hel i=lrl &
T it

- (- T £33+ % bjy(j))“
j=H+1 j=1+1 1

J
< ¥ I5.-bll; ¥(3) SepCo<p .

The 02 factor arises because of (xxi), and the last inequality follows

from (xiii).

Step L4: Lower bounds on unit profitabilities.

For I+1<j<J,
|xby =m0yl < Theenlly lIogll, <8¢5

Since n;by - er(b;) >0, xb, - er(b,) > -8,. For Ml1<j<T,
lej - njfj| < ||:t-1tj||1 I£51l,, < 8¢y

Since n.f. =0, -nf

4% > -8C,.

3
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n
Sceps: T y(i) Ao
j=J+1

Suppose otherwise. Recall from Step 2 that qgj =0 for 0< j<H.

Multiplying 3.4.13 by (x,q) yields

I J
O=x6+¢ - L xf, y(i)+ L [xby- ar(by)) y(])
jeHel 3 j=I+1 ;

J
>n6+ @ -8C % y(i)
j=H+1

&

ol

mini p(i) - 501 C2 >0,

The first inequality follows from the previous step, the second from
Step 2, and the third from (xxviii). The claim follows by contradiction.

Part (a) of the theorem is now established.

Step 6: Upper bounds on unit profitabilities.

In view of the preceding step, there exists j' in ({J+l, ..., n}

such that

L(le) = gjl * C(tj') GE(Vj') + C(tj') ®

Let b be an arbitrary unit activity in /3(t). Because of (xxiii) there

L exists b in EKtj,) s.t, ||b-bj,l|1 < e,. Hence :

j'

5 -

T2




|[“b - er(b,v)] = ["jt bj' - eY(bjc, Vj!)]l
= I[’tb = “bjl] + [’tbjl = njl ij} + e[Y(ij, an) = r(b,V)ll
.S “““1 "b-bjiuw + “K‘“j|“1 “bj."w + €1

Se, +8C + g

The e, term is a consequence of (xii) and (xxii). The €, term appears

1
because "",,5 ||||1 Since :tj,bj, - '-‘-Y'(bj;, vj,) <0, it follows that

(3-5-6) nb - er(b,v) < 5C1 + €+ € -

For I+1<j<J,

I[ﬂbj = eT(bj, V)] = [ijj = er(bj) vj)]l

I[’tgj o “ng] + [“jgj = ijj] + e[Y(bj, Vj) N T(gj, V)]l

IA

syl 180, + g lly 18 - oy, + e
5 501 + 62 + €1

Since “jbj - er(bj, vj) >0, it follows that

(3.5.7) -(8Cy + e; + €5) S ngj - er(gj, v)

Adding inequalities 3.5.6 and 3.5.7 yields
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(3.5.8) nb - er(b,v) < ,{Ej - eY'(‘E;j,v) + 2(501 + € + )

_<_ngj - er(gj, v) + A,

The last step uses inequality (xxx). By a straightforward extension of

the preceding argument, inequality 3.5.8 also holds if the RHS is replaced
by -nrfj + A for any H+1;< j £1I, or the LHS is replaced by -xf for

any f in Jm_l, or both, Hence 5 exhibits the desired unit profitability

property, and part (b) of the theorem is established,

n H

" € e(2r6 + (e+q)d)
sy [1- 2 sl sgpbg e E sy s S5l

Consider the expression

n H I
(3.5.9) (x6 + &) L y(3)+ I ¥(3)+ T xf;y(3)
3=J+ j=0 j=H+l
J
= L [nb, - er(b.)]ly(j) - (n6 + &d)| .
j=I+1 J J

Multiplying 3.4.13 by (nx,e) and solving for the last four terms of
3.5.9, then substituting this value back into 3.5.9 and cancelling the

e\ terms yields

n n
(3.5.10) (x¢ I y(§) - L Ix&; + xe(t,) + eB(t,) - er;] y(i)| .
J=dsl j=d+l i
Since ny >>0 for J+l1 < j < n, Walras Law [3.4.2(c)] implies

"
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n

n
z [njgj + 7y C(tj) + e¢(§j)-erj] y(j) = ¥ n 40 y(3) .

j=J+1 j=J+1

Adding the LHS and subtracting the RHS of this equation from expression

3.5.10 yields

n n
r (t-ﬂj) oy(j) - L (m-x,) [§j +c(t)] vy,
J=J+l 4=20l J 4

which is bounded by

8llell,, C, + 8C5 + 8C,C,

and this in turn (since C_, > 1) by

2
(3.5.11) t>c2(c3 +C) + Ileu”) 1

The bounds are direct applications of (ii), (iii), and (iv).

One consequence of the domination of 3.5.9 by 3.5.1l is that

n H
(3.5.12) (ve + &) % y(i) + L vy(3)
§=J+1 j=0
& J
S5« 2 nf, v+ Z [nby - er(b.)] y(3)
j=H+l j=I+1 ]

+ (18 + ed) - 8C,(C5 + C + oll,)

o bt

The second inequality follows from Step L. -

7> :




A second consequence of the domination of 3.5.9 by 3.5.11 is

that

n H
(3.5.13) (w6 + &) Y y(j) + jZo y(3)

j=}+1
I .
<- Z nfy y(3j) + X% [xb; - er(bj)l y(3)
j=H+l j=I+1

+ (6 + &d) + E:ca(c3 + Ch + ||9||°,)
S (76 + &) + (8C; + € + €5)Cp + B8CH(C5 + € + [ol)
S (w6 + &) + €.

The second inequality follows from an obvious extension of 3.5.6 to

vectors b in /3( tj) for I+1 < j < J, and the third inequality from

(xxxi).

H
Multiplying 3.4.13 by (0, e-q), solving for 2 y(j), and
§=0

substituting this expression into 3.5.12 yields

n J
(re + &) Y y(i) > L (e-q) r(bj) y(3)
j=J+1 j=I+1
n
+ X [(e-q) B(t.) - (e-q)rj + (e-q)4)y(3)
j=J+1 J

- (e=q) + (70 + &) - BCy(Cy + S5 +C, + loll,) .
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Since y and P are non-negative and (e-q)rj‘s 2(n-m)d, the preceding

inequality implies

n
(3.5.14) (n6 + @) > § 3 y(3) > (n6 + @) - 2(n-m) 8¢, - 502(01+C3+Ch + ”GHN)
=J+
>2(ne + Q) -e , by (xxxi) .
H

Dropping the non-negative term Y, y(j) £rom 3.5.13, dividing by

16 + €3, and combining the result with (n8 + qf&)-1 times 3.5.14

yields
9 + P - ¢ & 0 + A + ¢
= D ) st
e + @ j=J+1 e + eA ’
which implies
€ S €
=gl L. ¥ E .
8 + A {=del o + @
Replacing the left hand term by the more negative term ;ETiSEE completes

the first half of this step.
n
Rearranging 3.5.13 and imposing the lower bound on r y(3)
j=J+1
derived from 3.5.14 yields

H
jz.oy(j)5n9+45+e-(ﬂ9+eﬁ)-%rf%-—e

_ €(2nB + (e+q)d)
g 0 + @@ ’

thereby completing the second half of this step,

7




Step 8: ugjllm <G for J+1<j<n. .
Suppose there exists j' € (J+1, ..., n} such that "gj'"w > Cg.
Let vj be any of the other demand labeled vertices of o. Then either

"gjll°° > C6 or else v, € 3(06). In the latter case since nx, >> 0, the

b j

vertex vj actually belongs to §(C6) by 3.5.2(a).

Consider the line segment joining Vv and v_.. All points (n,r,t)

: i S

on this line segment have & >> 0, and hence are subject to Walras Law

[3.4.2(c)]. The right hand terms of the Walrasian equation are bounded

on the segment; the left hand terms are bounded below. Hence the left

hand terms are also bounded, in particular the term x=(n,r,t). Since

the line segment (ignoring t) lies in the interior of S, it follows

that = is bounded there, Thus the entire segment lies in g&) for

some Q >0, and by 3.5.2(c) the demand correspondence is l.s.c. on the

line segment. ¢
Since 'I(C6) is closed, it meets the line segment in a closed set.

Hence there isa point Vv in the intersection closest to the end point

v.,. If Vv

j it
| £ -norm. Otherwise, since Z is l.s.c. there, a point on the segment

then no point in =(v) can be less than Cg in

slightly closer to v than Vv can be found whose image under = also

j'
contains a point with Em-norm less than C6’ thus contradicting the

E -

definition of V. Hence if V £ Vit there exists a point £ in Z=(v)

with £ -norm at least C,. The same is trivially true if v = Vi
e.g., let i - gj,.
Since "G'Vj"1 <8 < B, there is a point Ej in E(vj) within

¢ -distance 1 of E. Hence llEjlle Cg - 1, and by the definition of

c, Ilgj||”_>c6 - - L
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It has now been established that |I§j,||‘,° > C6 implies that for

all J+1 < j < n, either ll§j||,, >Cg or else l|§j||,, 2C5-C - 1. By

definition of Cj,

¢5 > lig; v, = llajll,, y(§) 2 (Cg - C5 - 1)

Hence y(j) < 05/(06 = C5

Steps 2 and 7,

e <1 ——
mini p(1) 0 + @

n
< Loyl
j=J+1

< (n+1)Cz
Sgoen o o

which contradicts (viii) and thereby completes the step.

Step 9: Construction of E'.

y(3) .

- 1) for J+1 < j <n. But in light of

The arbitrary point (n,r,t) € conv ¢ chosen at the end of Step 1

will henceforth be considered one of the demand-labeled vertices

(xj, rj, t:j) for J+1 < j <n. In view of the preceding step, all

such points belong to ._\:(C6). Clearly x £ O.
As a consequence of (xxv) there exist vectors Ej

for J+1 < j < n which satisfy |E, - ¢.|l, < e, . Define
-d 3 o UhE L
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B=G0 ™ T K omn
J=J+1 J=J+1 :

E Since ZE(x,r,t) is convex, it contains ¥. Abbreviate ¢(E&,u,r,:)

and b(?,n,r,t) by ﬁ(fj) and @(f) respectively.

Step 10: Supply-demand proximity.

Consider the expression

: I J
(3.5.15) € - w(e) + T E 3} = L b oy,
j=H+1 j=I+1

Upon adding and subtracting identical terms this becomes

F
; n n
IS ®+re()) i)+« (1- T y(3) F+cr)) -6
1 3 J
k + L £y(8) - T byy(a)l,

Expanding ? according to its definition and replacing the last three

terms by equivalent terms taken from 3.4.13 yields

n n
I -ty ece) -cle)lv) + (1= T 3(9) T+ o),
j=d+1 J=J+1

which in view of the first part of Step 7 is bounded by
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E(C + C + C’)
L 5 [$
(€h + e5)C2 + o

e(né + @+ Ch +C o+ C6)
e + @

=

2€(maxi p(i) + A + C, + C‘5 + Cs)

- min, p(1i) S

The second inequality uses (xx), the third uses Step 2, and the last uses
(ix). Combining inequality 3.5.5 with the one just established, i.e.,

p exceeds expression 3.5.15, yields

IE - w(e) - Bll, <2,

thereby proving the second half of part (c). The first half is established

by the following calculation:

= n oy e
-2 s T s v
j=J+1 j=J+1 o
n n
ST el IR R RO
j=J+l j=dsl o
n &l n
S0 L W) ey L ¥ ey <. .
j=J+1 j=J+1 1

The final inequality comes from (xvii).
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Step 11: Tax-revenue proximity,

The discrepancy between the actual taxes levied against t and E,

and the pseudo-taxes defined in part (d) may be estimated as follows:

J J

n
[6® « T wEp v - (T se) v+ T v w0
j=I+1 T j=J+1 j=I+1 ()

n

n
|| L OBE) - 801 v(3) + (L= T y(3)) A(E)
j=J+l ]

j=J+1

"

J

+ j=§+1 [r(b;) - r(b,)] y(j)lL°

eC
SeCh+rmTE Tl

e(nb + P + QZZ

0 + A

2¢(max, p(i) + A + 912
ming p(i)

IA

<p

IA

The equality step uses the affineness of @ in the demand coordinate.
The first inequality uses the first part of Step 7 plus (xviii), (xxiv),

(xxii), and the definitions of g, for J41 < j<n and gj for

J
I+1 < j £ J. The second inequality uses (xvi), and the third inequality
Step 2. The final inequality follows from (ix).

The discrepancy between actual revenue and pseudo-taxes may be

estimated by
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n J
co (T BE) N+ T () v(3)
j=J+1 j=I+1 L)

H n

er T og v+ T loer) w9 -4
j=0 j=J+1 (%]

n

n H
| £ v e T w0 (s0) + T gy w0
j=J+1 j=0 ©

j=J+1

€ (216 + (e+q)A)
<ac2+n9+¢+ e + @

(216 + 2eA + 2)
S 06, + %0 + &

be(max, p(i) + e + 1)
=86, + Eni p(1)

<p .

The first equality is obtained by a substitution involving the last n-m
equations of 3.4.13. The second equality is a result of algebraic
manipulation. The first inequality uses all of Step 7 plus the fact
that r and A are bounded above by e. The last two inequalities
follow from Step 2 and (xxxii) respectively.

Combining the two estimates obtained above yields

J
re (0 + T x(B) v <

j=1+1

Part (d) of the theorem is now established, thereby completing the proof. O

3.5.16. REMARK. The argument in Step 8 additionally shows that =

satisfies condition 3.4.2(e).
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3.5.17T. REMARK. If = happens to be bounded on S X T, then

Assumptions 3.5.2 and 3.5.3 can be replaced by the single assumption of
lower semi-continuity. Furthermore, the conclusions hold for any (n,r,t)
in conv ¢ (mot just demand-labeled vertices), and ”“”1‘2 5.
The above theorem guarantees that the economic algorithm will

generate an approximate equilibrium graph of arbitrarily high quality in

a finite number of steps. For any desired tolerances A and pu, one need
only operate the algorithm until it passes through a block S x [i, i+1]
containing n-simplices of diameter no larger than 8., The last segment

of (pk) which spans the block would then be mapped back to S x T to

yield an approximate equilibrium graph A Since neighboring points in

i
Ai differ by at most 2% in Zl-norm, every economy £&(t) lies within
® of an economy 8(t?) represented by a point (n?, r?, t?) in A,

The latter economy has production and consumption plans which comprise
an approximate equilibrium (modulo A\ and u) at prices and revenue
levels (r,r), and which may be approximated (within p) by pieces of the
label system L(ck)yk = p, ykiz 0.

Of course in particular numerical examples the uniformity constant
8 1is never known. Even if it were, one would be foolish to operate the
algorithm until a block S x [i, i+1l] containing n-simplices of diameter
no greater than & was traversed, Instead one would continually monitor
supply-demand imbalances and unit profit negativity in hopes of satisfying
the tolerances pu and A well before the diameters of the n-simplices

reached 8. Without the knowledge that & exists, however, the use of

such criteria would be difficult to justify.

8L
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Figures 1.1.5 and 1,1.6 indicate what an approximate equilibrium
graph might look like. The endpoints of the line segments forming the
polygonal path comprise the sets ak. The approximate graph Ai consists

of selected endpoints, including at least one from each ok.

3.6. Alternate Versions of the Model

The economic model presented in this chapter incorporates one or
more revenue collection and distribution systems of the type introduced
by Shoven and Whalley. The development of the model relies heavily on
the presence of these systems. If however, one wishes to study economies
with no revenue systems, his best recourse within the context of the model
is to let n = m+l and set the tax functions P and y identically
equal to zero. This will indeed induce the algorithm to correctly approx-
imate the equilibrium graph of the family of economies. Such an approach
is wasteful computationally, however, since the algorithm must operate in
a space containing one unnecessary dimension.

A better approach is to strip the model of revenue systems entirely,
The analysis in this chapter can easily be repeated for such a reduced
model. All coordinates of S are allocated to prices, and the L2
portion of the economic labeling disappears, The second equilibrium
coudition is discarded, and taxes are removed from the third. Walras Law
is purged of the ® and r terms. All constructions and proofs are
simpler and can be readily obtained by condensing existing constructions

and proofs, Several of the numerical examples discussed in Chapter 6 are

based on this variation of the economic model,
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Another potentially useful variation recognizes differences in

the tax situations of individual consumers and producers., As the model is g
presently formulated, taxes depend only on the aggregate behavior of
economic agents. This simplification is satisfactory so long as each
demand point and production plan result from unique combinations of agent
behavior. But if two producers, for example, with different tax rates
operate the ;ame non-slack activity, them y wmust necessarily be ill-
defined.

This limitation can be easily overcome by assigning each consumer
his own demand correspondence and tax function and each producer his owm
unit activity correspondence and unit tax function, These agent-specific
mappings must obey the same rules as the present economy-wide mappings.
Combining the agent-specific mappings by summing demands and taxes and
taking unions of activity sets results in new economy-wide mappings.which
satisfy the same conditions as the present ones. Therefore the proofs

go through virtually unchanged.
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CHAPTER 4

COMPUTATIONAL REFINEMENTS

TheAdevelopment of the economic algorithm in the preceding chapter
was directed primarily toward exploiting the labeling capabilities of
the fundamental algorithm of Chapter 2. Little attention was paid to the
abstract pseudomanifold K?*l other than to ascribe it a needed refine-
ment property. Before computations can be performed with the algorithm,
however, an explicit specification of the pseudomanifold is required.
Although refining subdivisions of S x [0,») have been discovered which
satisfy conditions 2.2.1 and 3.&.10, unfortunately none of these are
practical for computing equilibrium graphs. The problem with conventional
structures is that they refine rapidly and'inexorably as t -, Conse-
quently the approximation error along equilibrium graphs produced on
such structures tends to shrink to unmanageable levels before the final
economy is reached.

The desire to maintain relatively uniform levels of approximation
error along equilibrium graphs necessitates a new concept in manifold
design. The dynamic definition principle introduced in the next section
is such a concept, This principle essentially states that the geometry
of the manifold need not be fixed in advance, but can be dynamically
altered in response to accuracy requirements as the algorithm proceeds,

In Section 4.2 two families of manifolds which embody the dynamic
definition principle are introduced -- ome for R" x [0,o) and another

for S x [0,o). Each member of these families is constructed from
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transformed sections of Todd’s J1 and 33 triangulations [20]. The
configuration of these sections is determined by extermal requests based
on information contained in the label systems L(o)y =p, y >0 for

o € K. Section 4.3 describes how these label systems are manipulated
to generate the manifold requests., The final section of the chapter
lays out the basic architecture of the computer routines used to imple-
ment the economic algorithm, with special emphasis on the sequence of

major processing activities and information flows between them.

4.1, The Uniform Approximation Problem

The quality of the finite approximations proposed in Sectiom 3.5
is measured in terms of supply-demand and tax-revenue proximity, and umit
profit negativity. A convenient term for describing these assorted
deviations from equilibrium behavior is range error. The companion term,
domain error, will be used to demote the diameters of the n-simplices
ak from which the approximate equilibria are extracted. Phrased in this
language, Theorem 3.5.4 states that all components of range error along

an approximate equilibrium graph A, can be made to satisfy pre-deter-

i
mined bounds by keeping the domain error sufficiently small, The theorem
says nothing, however, about fluctuations of range error within the
prescribed bounds,

For computational purposes it is highly desirable to have uniform

levels of range error throughout the set Ai’ The principal benefit of

uniformity is computational efficiency, i.e., fewer iterations required
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to generate Ai‘ The numerical experiments reported in ChapCer 6 reveal
that large amounts of computational effort are required to produce equilib-
rium graphs for even modest size problems. Since manifold mesh is a key
determinant of computational effort, it is imperative to use the largest
grids possible which still keep range error within prescribed bounds.
Also, holding range error relatively constant increases the likelihood
that observed price variations along the equilibrium graph result from
‘changes in economic behavior rather than from variations in the quality
of approximatioms.

A fundamental computational issue is, therefofe, how to maintain
uniform levels of range error along the approximate equilibrium graph.
The only readily comtrollable parameter which influences range error is
domain error, i.e., the mesh of the manifold. There is no way, however,
to determine in advance what the domain error should be along a particular
path, What is needed is a dynamic adjustment mechanism to monitor range
error as the algorithm proceeds and alter the manifold accordingly. Such
a mechanism would have to rely on an external information loop to provide
control data, because the range error of an approximate equilibrium depends
on the entire label system L(ck)y =p, ¥y >0 evaluated at current prices,
not just the most recent label.

The idea of dynamically adjusting the manifold presents some serious

O s TC———

technical difficulties. First of all the manifold genmerated through such
a procedure must satisfy conditioms 2.2.1(a) - (d) in order for the
algorithm to be assured of working— a non-trivial requirement even for

rigidly defined structures, Furthermore, the way the manifold is defined
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in a particular region must be recorded so that the same definition can
be used if the algorithm passes through that region again. In order to
prevent the information structures which store the manifold definition
from becoming unmanageable, some limitations must be placed on the type
of adjustments that are permitted, If too little flexibility is allowed,
however, then the ability to control range error is lost.

A compromise between complete flexibility and rigid pre-definitiom
is achieved in the dynamically defined manifolds D1 and D2 introduced
in the next section. Adjustments to the manifold mesh are permitted only
when the algorithm moves upward in S x [0,x) to previously unattained
levels. Whenever such a movement occurs, the manifold is immediately

tk+1] protruding into virgin territory.

specified on a thin slab S Xx [tk,
The manifold may thus be regarded as a flexibly defined stack of rigidly
defined layers. The price paid for this compromised freedom of definition
is the potential loss of control over range error if the path (ck) turns
back down into previously defined regions of the manifold, It is by no
means inevitable, however,6 that such loss of control will be accompanied by
a loss of accuracy.

The concept of flexible manifold definition may be summarized in
the following dynamic definition principle: the specification of any
portion of the manifold may be deferred until that portion is actually
required for calculations, provided the specification procedure always
results in a legitimate structure, This principle may be extended to

the family of economies [e‘,(t:)]':€ r as well, Hence one could conceivably

build dynamic growth models in which the parameters of future economies
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depend on currently attained equilibria. Such models, however, are beyond
the scope of this study.

An additional benefit of dynamic manifold constructior is a simplifica-
ﬁion of the procedure outlined in Sectiom 3.5 for locating a satisfactory
approximate equilibrium graph. Instead of generating successive sets
Ay util one satisfying all range error tolerances is found, only the
single set A2I need be computed. This is accomplished by refining the
manifold until all range tolerances for economy &(0) are satisfied,
then adjusting the manifold to meintain these tolerances as the algorithm

proceeds through the remainder of the family ({g(t)]} The level in

tE T
S »x [0,0) where the first acceptable equilibrium for ¢&(0) appears is
defined to be 2I. The rate of progression through the remainder of the
family is cemntrolled by applying a vertical scale factor to the economy

index.

L.2. Dynamically Defined Manifolds D, and D

1 2
The dynamic manifold construction procedure outlined above will now

be formally laid out and analyzed. The analysis is based on a characteriza-
tion of all possible outcomes of the procedure, Each outcome will be

shown to constitute a legitimate pseudo-manifold on S x [0,). Most of
the development deals with triangulations instead of pseudomanifolds.

The two concepts, however, are equivalent for all practical purposes.

The exposition begins by defining a family D, of triangulations

1
of R" x [0,o) which simultaneously triangulate a subset of R" x [(0,=)

o1

ST




affinely homeomorphic to S x [O,x). The image of D1 under the homeomor-

phism yields a family D, of triangulations of S x [0,). Members of

2

the class 02 represent all possible outcomes of the dynamic construction
process.

The raw materials from which the family D, is build are Todd's

1
uniform triangulation J1 and his refining triangulation JB' Slabs of
simplices from Jl and J3 are stacked together to exhaust R" x [0,=).
Care is taken so that the faces of simplices in adjacent slabs agree on
the interface between the slabs. Much of the notation is taken from Todd's
paper [20]. One minor change, however, is that the simplices considered
here are closed, but have relatively open faces.

Throughout this section R" x [0,0) will be identified with

{x €R

: x(0) >0} and S x [0,=) with [x € R:+2

: %x(1) + +oo + x(n+1) = 1}, ‘;
The ([O0,x) factor thus lies along the O-th coordinate axis in both séaces.
This factor will frequently be described as extending in the 'vertical"
direction,
The specification of D1 begins with the primary building blocks

Jl(a) and J, and their derivatives. The triangulation Jl(B) of

3
depending on the scale factor ® > 0 1is defined as follows. Let

1

Rﬂ+1

J?(a) = (y eR™" y(1)/® is integral for 0 < i < n} be the set of
vertices of J;(8), and let J0°(8) = [y € J3(8) : y(1)/8 is odd for

0 < i <n} be the set of central vertices,

k.2.1, DEFINITION. J,(8) consists of all (n+l)-simplices i
T= (Y15 Ygr +ve» yn) such that for some triple (y,v¥,a) in J,° x ¥ . xA

(see Section 1.3 for definitions of the latter two symbols) !H

o2 i
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for 0<i<n.

The simplex <t is also written 1t = (y,V,a). In Lemma 3.2 of [20],
Todd proves that J1(5) triangulates Rn+1.
An important hereditary property of J1(5) which insures that the

slabs comprising members of D fit together properly is noted in the

1

following proposition,

L.,2.2. PROPOSITION., The faces of simplices in J1(5) which meet the
slice R" x {82} for £ odd form an n-dimensional version of J,(8)

on the slice.

Proof: The slice R" x {82} is triangulated by the collection of

n-simplices formed by taking the first n+l vertices of members (Y,W,a)
of J1(5) with y(0) =84, ¥(n) = 0, and a(n) = 1, Ignoring the O-th
coordinate, these n-simplices satisfy all membership criteria for 31(5)

in n-dimensions, and exhaust the set of simplices that do so. O

Sections of the triangulation J1(5) provide manifold blocks of

uniform mesh. The particular sections used to construct triangulations

in D1 will now be defined.




4.2.3. DEFINITION. Define 31(6,2) for £ >1 and odd to be the set

of all (n+l)-simplices in J,(8) which meet R" x (8, 82).

h.2.k. PROPOSITION. J,(3,2) triangulates R" x [&, 82].

n+l

Proof: Since JI(G) triangulates R the faces of all simplices in

b

Jl(a,z) cover R" x (8, 82) and are disjoint, Consider the simplices
(y,v,a) in J1(5) with W¥(n) = 0 and either y(0) =% and a(n) = 1,
or y(0) =52 and a(n) = -1, These simplices belong to 31(5’2) and
cover R" x (8} and R® x {52}, respectively. Hence R" x (6, 82] is

covered by simplices in J1(5,£).

n+1

Any point in R outside of R" x [6, 8] must lie in a simplex
s

(y,v,a) of J1(5) satisfying either y(0) <8, y(0) > 84, y(0) =8 and
a(w'l(o)) = -1, or y(0) =3¢ and a(w'l(o)) = 1. Simplices satisfying
any of these conditions miss R® x (3, 84) and hence cannot belong to

JI(S,E). Therefore JI(S,Z) covers R" x (8, 4] precisely., O

In light of Proposition 4.2.2, the upper and lower boundaries of
R™ x [8, 8¢] 4inherit n-dimensional versions of Jl(ﬁ) from Jl(b,z).

The next components of D, to be specified are the blocks with

1
expanding and refining mesh, Both of these are derived from Todd's

refining triangulation J5. Let Jg = (y € Rn+1 : y(0) = 2'k for

k € Z+' and y(i)/y(0) integral for 1 < i < n} be the set of vertices

and JOc = {y € Jg : y(1)/y(0) 4s odd for 1 < i < n} the set of

3
-k

central vertices. To each central vertex y with y(0) =2 and k > 1,

9k
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there corresponds a closest central vertex z with 2z(0) = 21°k. The

1

I
|
|
I
|
k
ﬁ

vertex 2z may be represented as z =y - y(o)v, where vy € A™% and

v(i) = -1 or +1 according as y(1)/y(0) equals 1 or 3 (mod k).

T ——

4.,2,5. DEFINITION, J3 consists of all (n+l)-simplices T = (y_l,yo,...,yn)

Oc 1

f 1
such that for some triple (y,¥,a) in J5 X¥ o1 with y(0) < 3

n.
x ATt

<
!
-
"
<

!
’P -
5 S y(0) a(i) ew(i) , for 0<i<j=y¥ 1(0)

<
.
|

n
Yy =¥4.q - 9(0) ZEj v(¥(£)) ey p
yi = yi-l + ZY(O) V(‘i’(i)) e‘l{(i) ) for j<i S o,

where vy 1is as above.

The simplex t is also written rt = (y,¥,a). Note that only the

first j-1 components of the vector a are used in the definition,.
In Lemma 5.2 of [20], Todd proves that J3 triangulates R" x (0,1}.

The triangulation J5 possesses a hereditary property similar to

J3,(8).

4.,2.6. PROPOSITION, The faces of simplices in J5 which meet the slice

R x (27%) for s € 2 form an n-dimensional version of J1(2'£) on

the slice.
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Proof: For £ > 1 the slice R® x (2%} 1is triangulated by the collection

of n-simplices formed by taking the first n+l vertices of members

(y,v,a) of J3 with y(0) = 2'z and Y¥(n) = 0. Ignoring the O-th
coordinate, these simplices satisfy all membership criteria for Jl(a")
in n-dimensions and are the only ones that do so. An equivalent way to

represent these n-simplices is to take the last n+l vectices of members

(v,4,8) of J5 with y(0) = grbet

covers the case ¢ = 0, d

and ¥(0) = 0. This representation

The O-th coordinate of the central vertex of simplices in J3 plays
a role similar to the scale factor % in Jl(S). Later in this sectiom

the manifold blocks extracted from J, will be translated vertically,

3

and hence the defining recursions in 4.2.5 will no longer hold., If,

however, one replaces y(0) with the appropriate scale factor 8, the
recursions will still be valid. To cope with this eventuality K simplices
in vertical translates of Jj will be denoted (y,v,a,d), where B is
an appropriate scale factor E'k. For consistency simplices in vertical
translates of J,(5,4) will likewise be denoted (y,v,a,d).

The sections of J, which provide manifold blocks of expanding

3

mesh will now be defined,.

L.2.,7. DEFINITION. Define J3(zl, 22) for integers 4, > 4, >0 to

‘ be the set of all (n+l)-simplices in J3 which meet R" x (2‘22, 2-21).

L A
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k.2.8. PROPOSITION. Jy(£, £,) triangulates R x [2-%2

Proof: Since J5 triangulates R® x (0, 1], the faces of simplices in

I5(2y, £,) cover RY x (2-22, 2'21) and are disjoint, Every simplex

(y,¥,a) in I5 ré)~1

and these simplices cover R" x [2'31}. Similarly every simplex (y,6V,a)

with y(0) = 2 and V¥(0) = O belongs to J5(zl,22),

in- J3 with y(0) = 2'22 and ¥(n) = O belongs to J3 L

these simplices cover R® x {2'22]. Hence JB(Zl’ 22) covers

(4, 4,), and

R® x (2792 2741,

2

Any point in R” x (0,1] 1lying outside of R x [2'52 2-21] must

’

lie in a simplex (y,¥,a) of J, satisfying either y(0) > 2’21 or

3
y(0) < 27%2,  since no such simplex meets R" x (2'22, 2’21), none can

n -.@2 -21
belong to Jj(zl, 22). Hence Jj(zl, 22) covers R x [2 ¢, 2 7H]

precisely. Od

In light of Proposition 4.2.6 the upper and lower boundaries of

R® x [2'32 2’11] inherit n-dimensional versions of J (2'21) and

s

1

Jl<2_22)’ respectively, from J.(£., £

LA 1 2)'
The only primary building block that remains to be specified is the

one with refining mesh., It is obtained by merely inverting the expanding

segment,

L.2.9. DEFINITION., Define -J (El, 12) for integers £, > 2. >0 to

5, 2 1
be the image of J5(11, 22) under the linear homeomorphism that reverses

the sign of the O0-th coordinate of points in Rn*l.
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Since triangulations are preserved under linear homeomorphisms, the
simplices in -Jj(ll, £,) triangulate R" x [-2’11, -2'22]. Also, since
the homeomorphism used to define -Jj(ll, 12) affects only the O-th
coordinate, the n-dimensional versioms of J1(2°£1) on R® x [2"1]
for i = 1,2 pettransferred intact to the boundary hyperplenes of
B® x f27ft 27y,

Now that all the necessary building blocks have been defined, the
next step in the specification of D1 is to explain how these blocks fit

together to form triangulations of R" x [0, »). Each member of D. is

1
characterized by a sequence (Bk) of blocks of simplices, a sequence
(tk) of block interface heights, and a sequence (Gk) of block inter-
face scale factors., The simplices in each block Bk triangulate the

slab R" x [tk'l, :k]. The blocks are configured so that both Bk and

Bk+1 induce an n-dimensional version of Jl(ék) on the interface
R" X {tk}. Each Bk is a vertical translate of either JI(B, 2),
£
35\21, 22)’ or -Jj(zl, 22). Blocks with odd sequence numbers are
translates of 31(5,3), while even-numbered blocks may be translates of
k

either Jj(zl, 22) or 'JB(ZI’ 22). Each block B~ is assigned the
type code Bk ==-1 0, or 1 according as its mesh is refining, uniform,
or expanding, i.e., according as the block is a vertical translate of
-JB(ZI, 2,), 3,(8,2), or J3”1:22)'

In practice the blocks are specified one at a time, each depending
on its predecessors and the requirements of the economic algorithm. The
dynamic construction procedure is really, therefore, just an induction

scheme for defining new blocks in terms of previous ones. This scheme

serves as the basis for the formal definition of the family Dl'




of triangulations of R" x [0,=)

4.2,10. DEFINITION. The family D

1
-
consists of all collections U B of (n+l)-simplices taken from
k=0
sequences (Bk, tk, Sk) generated according to the following rules:
k : 2 £ i > 0;
=0: B = - 5(0,3) + ey for some integer y) ;
Co =1~ 2-2,'
50 = 2-2,'
k

k>0 and odd: B = Jl(Bk'l, 2) + (tk'l - Gk"l)eo for some
odd integer £ > 3;

k tk-l £ (2-1) Bk'l;

k-1,
J

k >0 and even: Either

k k-1 k-1 k-1
B = JB(Z, -log2 8" ) + (¢t - 8 )e0 for
some non-negative integer £ < -log, Sk’l;
ek | kel ot | gLy,
Bk = 2-£j
or
k k-1 k-1 k-1
B = -Jj(—log2 5 7, 4) + (t + 8" T)ey for
some integer £ > -log, 5k'1;
ko gkl ghel ook
8% . 2%,

Note that 8k is always a non-positive integral power of two, so

.

the log2 terms are always integral. Members of D1 will be denoted
k

s

'y

k il
") and by U B .
k=0

interchangeably by the sequence (Bk, t
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8%y of D

4.2.11. PROPOSITION. Every member (BX, t*

b

1
k n
t -« triangulates R x [0,x),

Proof: Since triangulations are preserved under tramslation, each block

- *
Bk triangulates the slab R® X [tk 1, tk] . Since tk - x the faces

-]

of all (n+l)-siaplices in U Bk cover R" x [0,=). It remains omly
k=0

to show that these faces are disjoint. Every face lies either in an

k-1 k

open slab R® x 0t , t ) or in a slice Rn X {tk]. The faces within

open slabs are disjoint because they belong to a single block of simplices.

The faces within a slice R" x {tk} are disjoint because the two blocks

k+l

of simplices Bk and B each induce the same n-dimensional triangula-

tion Jl(Sk) on the slice, as may be verified from Definitiom 4.2.10

and Propositions 4.2.2 and 4.2,6., O

Henceforth it will be assumed that all members (Bk, e Bk) of

2

Dl satisfy tk-na. Later, after the family D2

it will be demonstrated that this assumption is always satisfied in

has been introduced,

practice,.

The first few blocks of a typical triangulation of class D1 are

illustrated in Figure 4.2.1, The right triangles in the figure represent
k

b

2-simplices of the triangulation. The sequence (5k, t ék) of block

types, block interface heights, and interface scale factors associated

with this triangulation is (-1, %, %), (0, 1 %, é), (& 1<%, %),
, 1 1 1 e p
(0, 2, E), (-1, 2 %%, 1g), and (O, 7, 1z). (The ? signifies that B
is still under comstruction.)
e = 0,
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Figure 4.2.1. A triangulation of class D, on Rl x [0,=)
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The inductive scheme presented in 4.2,10 suggests that each block

Bk is defined in its entirety at step k of the induction., In practice

the blocks are built-up one layer at a time as the algorithm climbs
through [O,w). Whenever a new maximum altitude is attained, a decision
is made whether to extend the present block or begin a new one. In the
latter instance the block interface height tk, the interface scale

factor 6k and the new block type Bk+1 are recorded so that the manifold

2
can be reconstructed should the algorithm turn back down., With these
global parameters in place, the block number k and the local representa-

tion (y,¥,a,8) contain all the information needed to characterize any

(n+1l)-simplex in a member of D

1
The family D1 has now been described sufficiently well that the
characterization of the class 02 of triangulations of S X [0,») can

proceed. Little detailed work remains to be done because members of D2
are merely images under an affine homeomorphism of portions of triangula-
tions in Dl' The homeomorphism does not affect the O-th coordinate of
points in R" x [O,m), and therefore the vertical aspects of the geometry

of Dl’ notably the block structure, get transferred intact to D2. The

shapes of simplices in D are, of course, different from their pre-

2 2

images in D, but their size is still directly proportional to the local

1’

scale factor 8., Thus the notions of refining, uniform, and expanding

manifold blocks remain valid for D2.

The first step in the definition of D, 1is to identify a subset of

2

R" X [O,m) that is triangulated by members of D and is affinely

1
homeomorphic to S x [0,»), Let
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1

Cx[0,) = {x € R™" : x(0) >0 and 1>x(1) >.-- >x(n) >0} .

As elsewhere in this section the [0O,») factor lies along the O0-th
coordinate axis. According to Lemmas 4.1 and 5.5 of [20] and Proposition

4.2,11, the (n+l)-simplices in any triangulation of class D, which

1
intersect the interior of C X [0,o) triangulate its closure. Further-

more, C X [0,&) is homeomorphic to S x [0,») under the affine mapping

u:Cx[0,0) »5 x [0,@) defined by u(x) = Ux + e., where U 1is the

1
(n+2) x (n+l) matrix

r S
1 (0} o ... 0
0 -1 G o oo (0
(0] 1 -1 - .. 0
0 (o] 1 5
-1
0 0 LR O |

! )}

The stage is now set for the formal definition of D2'

103




4.2.12, DEFINITION. The family D, of triangulations of S X [0,x)
consists of the images under u of all triangulations of C x [0,=)
induced by members of Dl'

Members of D2 do in fact triangulate S x [O,w) because triangula-
tions are preserved under affine homeomorphisms. One may recall, however,
that full coverage of R™ x [0,0) and hence S x [0,») is only assured

by the assumption tk — o, Fortunately this assumption always holds in

practice, as will now be demonstrated.

4.2.13., PROPOSITION., If the sequence (Sk) in Definition 4.2.10

is bounded away from zero, then tk - o,

Proof: According to the definition of tk for k >0, either

L PRI L L IS
ek o ekl (oof | gRoly 5 kel gkl
or
kel gkl | oo kel ok =

In light of Theorem 3.5.4, domain error must be reduced only so
far in order for range error in an approximate equilibrium graph to meet
specified tolerances. By accepting a positive level of range error, one
effectively establishes a positive lower bound on the maximum acceptable
domain error., Since the dynamic construction procedure always seeks the

k

maximum acceptable domain error, the scale factors & which define
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domain error may be (and henceforth will be) considered bounded away from
zero. The claim follows from the preceding proposition,
Simplices comprising members of D2 admit the same representation
(y,w,a,b) as those in Dl’ i.e., y is a central vertex, y € Yn+1'
1

a €A™ , and B is a scale factor. The central vertices here are the
images under u of central vertices of corresponding simplices in Dl'
The remaining vertices satisfy the same recursions (4.2.1 and 4.2.5) as
their counterparts in D1 provided the canonical wynit vectors ej are
replaced by the columns uj of Ufor 0 < j<n. As noted earlier,
the term y(0) must be replaced by & 1in 4.2.5. The formula for
computing v, whose image Uv now points toward the central vertex y
from the closest central vertex 2z in the next coarsest layer of an
expanding orrefining manifold block, becomes more complicated because of

the transformation U, The components of v for simplices in D, are

2

given by v(n) = -1 or +1 according as y(n)/® is 1 or 3 (mod 4)

and y(1i) = v(i+l) or -v(i+l) according as y(i)/® is O or 2 (mod L)

for 1 <1i<n. The initial component v(0) is +1 or -1 according

as the manifold block is refining (Type -1) or expanding (Type 1).
Throughout this section the terms triangulation and manifold have

been used interchangeably. Strictly speaking, a manifold is a slightly

more general structure, For practical purposes, however, manifolds may

be considered to be induced by triangulations-in the following manner,
4.2.,14, PROPOSITION. Every triangulation in D
1

2 induces an abstract

pseudomanifold K" on S x [0,0) whose abstract (n+l)-simplices con-

sist of the vertex sets of (n+l)-simplices in the triangulation,
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and the induced collection

Proof: Consider any triangulation in D

2
Kn+1 of abstract (n+l)-simplices, Let g = [VO’ e iy vn] be an

abstract n-simplex in Kn. By definition o is the vertex set of a
facet of some (n+l)-simplex T = conv(og U [vn+1}) in the triangulation.
Suppose conv g is also a facet of another (n+l)-simplex

p = conv(o U [un+1]) in the triangulation. Since aff ¢ is an n-
dimensional hyperplane which cuts the (n+l)-dimensional polyhedron

S x [0,»), and since the interiors of T and u are disjoint, then
Yol and L must lie on opposite sides of aff o, Clearly T and
p are the only (n+l)-simplices of the triangulation which can contain
conv g. Furthermore, if o lies in a facet of S x [0,o), then T

is the only (n+l)-simplex containing o, since no other simplex of the

triangulation could lie on the opposite side of aff o from v and

n+1l
still reside in S x [0,o). Hence conditions 2.2.1(b) and (c) in the
definition of abstract pseudomanifold are satisfied.

Condition 2.2.1(a) is also satisfied because S x {0} is the image

under u of ({x €C x [0,») : x(0)

0}, which is a facet of the (n+l)-
simplex in 8° = -J5(0,1)+ e, obtained from the (n+l)-simplex (y,v,a)
in Jg with y = (%, ainy %) and ¥ = (0, n, n-1, ..., 1), Finally
since the interface scale factors 8k of the triangulation are considered
to be bounded away from zero, only a finite number of (n+l)-simplices

can lie below any given level in S X [O,»). Therefore Kn+1 satisfies

all the requirements of Definition 2.2.1, O




The definition and analysis of the dynamically defined families

of manifolds D1 and D2

structures will be concluded with the specification of their pivot rules.

are now complete, The discussion of these

These are formulae for determining which (n+l)-simplex in the manifold
shares a particular facet with a given (n+l)-simplex. Hence they
facilitate calculation of the incoming vertex in the fundamental algorithm,
The pivot rules for D1 and D2

tiers corresponding to the global and local levels of the characteriza-

are hierarchically organized into two

tion of simplices. The global tier determines whether the new simplex
belongs to the current or an édjacenc manifold block, and pinpoints a
set of detailed formulae in the local tier, The local formulae are then
applied to obtain an explicit representation for the new simplex.

Any simplex <t in a triangulation of class D1 or 02 can be
fully characterized by the global parameter k (block number) and the
local parameters (y,w,a,é). Alternatively <t may be expressed directly
as (y_l, yo, Vs +oes yn). This latter representation is used to
identify the dropping vertex vi- The new simplex <t' which shares
all of t's vertices except ' will be denoted (y', V', a', 8'). To

determine the parameters of rt',6 one first consults Table 4.2.2 to dis-

cover which manifold block k' contains +t' and which set of detailed

formulae to use in the next step. One then refers to the indicated set

of local pivot rules to obtain expressions for (y', v', a', 8'). In
the event that the local rules are found in Table 4,2.3, the criteria
| \ i=-1 and i=j-1, or i=n and i =j may hold simultaneously.
\ i

The first criterion in each pair should be used in these instances.
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TABLE 4.2.2. Global Pivot Rules for D, and D,
Local Table
k' Reference
; *
Y(O) = tk i=n ‘V(n) = O k+l |4.2.6 (-1t O)
B c1lste) =« 5  snlt « <1 Juto) = @ k-1 [4.2.6 (-1 ¢ 0)
otherwise k |4.2.3
5 w(n) = 0] B! = -1] kel |4.2.6 (0t -1)
;
h y(O) = tk i=n
ala) = 15 = U} kel |26 tor 1)
i PLI Wa) = 0" " = <1 %=l [h.2.6 (04 -1)
: y(0) = ¢! 30
‘ sa) = e re Mrliee e D
otherwise k {4.2.4
Kk *
y(0) =t -8 i=-1[¥0) =0 k+tl|4.2.6 (1t 0)
B . 0 s e™" t= nlea) =0 k-1{54.2.6 (1+¢ 0)
otherwise k [ L4.2.5
* Kk k
If B is latest block, then t ®,
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Also, in Type -1 and Type 1 blocks the central vertex pointer Vv can
frequently be updated instead of computed from the definition. Entries
for v and its successor V' have been included in the tables where
appropriate.

The local pivot tables are currently set up for triangulations of
Théy can easily be converted to D

class D however by replacing

2 1’
the column vectors v, (taken from the matrix U) by the canmomical
unit vectors e. of Rn+1 for 0 < j < n. Also, the central vertex

3

pointer vy must be computed by different formulae (given earlier)
according to whether the manifold be}ongs to D1 or D2,
In closing it is worth mentioning that the local pivot rules in
Tables 4.2.3 - 4,2,6 are really not intended for implementation on a
computer in their present form. Highly efficient but cumbersome variatioms
of these rules are available which generate the incoming vertex by operat-
ing on only one or two existing vertices of a simplex. These variations,

which are not shown here because of their complexity, were incorporated

in the computer programs developed for this study.

4.3, Error Control Heuristics

In order for dynamic manifold construction to achieve the control
over range error for which it was intended, external requests for particular
block types must be supplied to the construction routines., These requests
are honored each time a new layer is added to the manifold. The genera-

tion of requests naturally occurs in two steps. First the current
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approximate equilibrium must be analyzed to determine its ramge error,

and second a decision based on the findings must be made regarding which

request to issue. Both the analysis and decision steps rely heavily on
heuristics,
The measurement of range error requires heuristics because the

actual consumption and production plans guaranteed to exist by Theorem 3.5.4

cannot be computed in practice., Actual plans are the standards against
which approximate equilibria ought to be judged. 1In their place plausible
surrogates must be used., To this end the pseudo-production plan is
treated as if it were actual and the demand point used to label the
designated vertex (m,r,t) € g(g) is taken to be the actual consumption
plan., (For single-valued demand functions this latter assignment is
precise,) The profitability components of range error then become the
after-tax profitabilities at prices and revenue levels (r,r) of the unit
activities comprising the pseudo-production plan (these are ideally zero).
The supply-demand components become the differences between pseudo-supply
and the assigned demand values. Tax-revenue components are similarly
measured in terms of r, pseudo-producer taxes, and consumer taxes at the
assigned demand point. To allow for disparities among the units used
to measure commodity flows, supply-demand errors are calculated as a
percent of total demand.

The rules for converting range error data into control signals
must also be based on heuristics because of certain practical limitations
of the manifold construction process, Chief among these is the fact that

grid size cannot be changed instantaneously, even when the algorithm is
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moving upward through new regions of the cylinder. This constraint exists
because block interfaces can only occur at certain discrete levels and
because refining and expanding blocks must be separated by uniform blocks.
Also, the data structures used to store global manifold parameters would
take up too much space if blocks were switched too often. To get around
these limitétions, range error deviaﬁions must be detected well before
critical tolerances are reached. Also, corrective action must be strong
enough to restore errors to a level where they are likely to stay put

for a while,

Another difficulty is that range error consists of many components,
each with its own freedom of movement, while the control mechanism has
only one degree of freedom -- grid size. Hence the decision rules must
respond to that combination of error components in each situation most
likely to induce the entire body of components to move as a whole.

To implement these ideas a control system based on three tolerance
levels -- loose, central and tight -- was devised. The central tolerance
represents the most desirable level of range error. The loose and tight
tolerances denote, respectively, the maximum and minimum permissible
values. Different settings of the three levels can be made for different
error components. The computer programs, for example, use one set of
tolerances for profitability errors and another for supply-demand errors.

Whenever selected components of range error stray beyond the loose
or tight tolerances, a manifold refinement or expansion is requested
until specific components are brought back to the central tolerance level,

The control mechanism responds to any error component that violates a
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loose tolerance, since the validity of the approximation is jeopardized
by such deviations. Tight tolerances, on the other hand, trigger correc-
tions only when all error components cross them, Asymmetry between the
response criteria is necessary to prevent both sets of tolerances from
being violated simultaneously.

The detailed decision rules used to generate manifold type requests
are shown in Table 4.3.1. All cases presume that a demand-labeled
vertex exists., If not, then the indicated request is overridden by a

Type -1 request (or Type O if the current block is Type 1).

TABLE L4.3.1. Manifold Request Decision Rules

Current Status of Requested
Block Type Range Error Components Block Type
-1 Some above central tolerances -1

All below central tolerances (¢}
0 Some above loose tolerances -1

All below tight tolerances

Otherwise (o]

1 Some above central tolerances (6]

All below central tolerances
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L.4, Structure of Computer Programs

A flow diagram depicting the major processing sections of the
computer programs used to implement the economic algorithm appears in
Figure 4.4,1. The diagram concisely summarizes the logic of the algorithm
and serves as an introduction to the software employed in the numerical
experiments of Chapter 6. All important analytical functions are dis-
charged in the sections entitled manifold pivot, label generation, label
system pivot, and tolerance checking. The remaining sections merely
provide administrative support.

The data input and initialization section supplies the program
with two kinds of parameters -- economic and operational. The latter
group includes tolerance levels, basis re-inversion frequency, and
equilibrium report frequency. Main program data structures such as the
right hand side p of the label systems and the demand offset function
c(+) also get initialized in this section. Data structures controlled
by subroutines get initialized during the first subroutine call, The
final task performed in the initialization section is to print out all
input parameters for purposes of verification.

The manifold pivot section maintains a representation of the current

(n+l)-simplex Tk S Kn+1. Upon receipt of the position of a dropping

vertex from the label system pivot section, a new (n+l)-simplex Tk+1

is generated according to the pivot rules in Tables 4.22 - 4.2.6. The

incoming vertex vk"'1 gets passed to the label generation section. In

k+l

the process of computing v the program attempts to honor the latest

manifold type request issued by the tolerance checking section, This may
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entail the creation of a new block of simplices. If so, then the global
parameters needed to characterize the block are recorded in resident data
structures,

The label generation section assigns to the incoming vertex vk+1

an economic label L(vk+1) according to 3.3.12, 1In order to generate the

label, the first component of vk+1

(interpreted as t' € [0,x)) gets
converted to an economy index t € [0,1] by a piecewise linear functionm.
This function sets t = O unless t' exceeds the level to (determined
by the tolerance checking section) where the economic deformation begins.
The level t° marks the end of the first manifold block B° and was
earlier denoted 2I. Any excess of t' over to gets multiplied by a
vertical scale factor to become the economy index t.

The label system pivot section manipulates the linear inequality
systems L(Uk)y = p, ¥y >0 associated with n-simplices ok traversed
by the algorithm. The incoming label vector L(vk*l) is lexicographically
pivoted into the basis of the label system corresponding to the current

n-simplex Gk thereby driving out a column corresponding to one of Uk's

)
vertices, The position of this dropping vertex gets passed to the manifold
pivot section for use in computing the next (n+l)-simplex. Operations

on the linear inequality systems are performed via the revised simplex
method using the explicit form of the inverse basis. More sophisticated
basis~handling techniques such as LUD decomposition appear to promise

only modest improvements because of the need for full lexicographic pivots.

The basis re-inversion section periodically inverts the label system

matrix L(ck) to obtain a more accurate inverse basis. The numerical
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technique used for inversion is Gauss-Jordan elimination with row rearrange-
ment. Re-inversion occurs every N iterations, where N is an input
parameter,

The tolerance checking section extracts from the label system
L(ak)y =Pp, Yy >0 an approximate equilibrium for the economy represented
by some demand-labeled vertex of ak. Range error components for this
approximation are computed ome at a time until an unambiguous manifold
request can be determined from Table 4.,3.1. The request is then relayed
to the manifold pivot section for consideration during generation of the
next (n+l)-simplex. When the first satisfactory approximate equilibrium
is found for the initial economy g(o), the tolerance checking section
signals the label generation section to begin the economic deformatiom.

The equilibrium report section produces two kinds of printed reports.
The first summarizes in a single line the current state of the manifold,

the n-simplex ck and the label system associated with ok. The frequency

’
of this report is controlled by an input parameter. The second report
lists all details of the current approximate equilibrium., It is produced
each time the economy index changes by a pre-specified increment. Full

equilibrium reports typically appear interspersed among the more numerous

one-line summaries,
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CHAPTER 5

EXAMPLES OF ECONOMIC DEFORMATIONS
The economic model of Chapter 5 was posed in terms of market
aggregates possessing various abstract properties, This
recondite approach was adopted to ease the notational burden in proofs

and allow for maximum flexibility in applications. To justify the use of

such abstractions, however, and provide insight into the range of situationms
covered, concrete examples are required, The purpose of the present
chapter is to examine some typical microeconomic formulations which

give rise under deformation to the sorts of aggregates assumed in

Chapter 3,

The examples treated here include one detailed model of consumption
and two of production. The consumption model features the usual assort-
ment of consumers, consumption sets, preference orderings (reflected in
utility functions), and initial endowments. In addition each consumer
holds claims to revenue disbursements and pays taxes., Many of these
components may be deformed to sweep out a family of economies, Upon
aggregation the consumer-specific components yield a market demand
correspondence =(-), an initial endowments function w(:), and a tax
function @P(.) which satisfy all the requirements of Chapter 3. é

The production models feature a finite group of sectors, each
with its own set of non-slack unit activities and unit tax rates. These,
too, may be deformed across the family of economies. The end product in
each of the models is an aggregate activity correspondence /(:) and a

tax function y(-) which satisfy all the conditions assumed in Chapter 3.
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The examples covered in this chapter were selected because of

their widespread use in empirical microeconomic studies. Consumer demands
are derived from CES utility functions, and incur ad valorem consumption
taxes of the type described in [15], [19]. Ome of the production models
features the well-known activity analysis formulation of conversion
technology. The other employs multi-factor CES production functioms to
describe input-output relationships in each sector. Both production
models incorporate ad valorem production taxes of the type used by Shoven
in [16], [17].

Many variations and extensions of these examples are possible within
the framework of the general theory. Even more can be envisioned which
deviate from the general theory only in their behavior on or near the
vertical facets of S x T. These, too, can often be solved by the
economic algorithm. The examples considered below, however, suffice to
describe all the numerical experiments reported in Chapter 6,

As in Chapter 3 the examples inhabit a space of m+l commodities
indexed i =0

m and n-m revenue systems indexed i = m+l ..., n,

g ey ’

Some of the symbols of Chapter 5  notably c,d,p,ﬁj, and Yj’ are reused

here with different meanings.

5.1, CES Consumption

The CES utility function originally appeared as a production function
in a paper by Arrow, Chenery, Minhas, and Solow [1]. Many of its properties
make it both appropriate and expedient for use in empirical models of

consumer preferences, although certain deficiencies such as the absence 8 |
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1 of an income effect must be tolerated., The function is defined on the

non-negative orthant of commodity space and assumes the basic form

)

L, ' b/(b-1
1 (5.1.1) Rl [120 a( 1) x( i)(b-—l)/b] (b-1)

where b 1is the elasticity of substitution and a is a vector of
weighting factors (also called demand intensities). For values 0<b <1

the function can only be defined on the boundary of R:+1 via limits

from the interior. To insure that u is non-decreasing, the weighting
vector a must be non-negative, and to exclude trivial cases only non-
zero weighting vectors will be considered, Whenever a(i) >0, good i
will be described as '"desired" by the consumer whose preferences are
represented by u.

Many values of b are technically possible, However, for b <0
the function is convex, which violates the principle of decreasing marginal
utility. Negative values of b are, therefore, excluded. For b >0
(b # 1) the function is concave and hence admissible, (Both properties
follow from the generalized Minkowski inequality in Section 1,17 of [3].)
For the critical value b = 15 u(x) 1is undefined in the above form.

However, if ea = 1, then letting b — 1 and applying L'Hospital's

rule yields

(5.1.2) u(x) = E x(i)a(i) s
i=0 ]
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which is the familiar Cobb-Douglas utility function. This may be proven
concave via the gradient inequality and the generalized arithmetic-geometric
mean inequality appearing in Section 1.1l4 of [3].

Values of b between zero and one correspond to complementary goods
while values of b > 1 connote substitutes, The extreme cases of perfect
complements and perfect substitutes are covered by limiting forms of 5.1.1
as b—>0" and b - o respectively, Only finite values of b will be
admitted in models treated here. A concise summary of the properties of
5.1.1 for 0+‘5 b < o appears in Section 3-6 of [10].

The reason for introducing the CES utility function is to determine
how a rational consumer whose preferences are reflected in this function
makes his purchase decisions. Suppose such a consumer has income p >0

m+1

to spend for goods and services and must pay prices p € R+ for these

items. His purchase decision problem is

(5.1.3) maximize u(x)
subject to px <p

x € Rm+1 &
+

This is a well-posed concave program, so either there exists an optimal

solution §, or else the problem is unbounded. First note that if a(i)

L[}
o

then u is independent of x(i)., Since x(i) may cost money, it is

always optimal to force x(i) = O, The solution is then independent of

p(1).




Now consider the case where a >> 0. Suppose all prices are

positive., If p = O then the feasible region consists of the single

point x =0, If pu >0 then 5,1,3 is a bounded concave program over
a feasible region with non-empty interior. Applying the Kuhn-Tucker

sufficient conditions to 5.1.3 (with x restricted to the interior of

R:+1 where u is differentiable) yields the unique optimal solution

(5.1.4) 3 =(£2L a(m) ) 0

P(O)b’ e P(m)b ; a(i) p(i
i=0

1=

)l-b

Separate analyses are required for the cases b £ 1 and b = 1 because
of the different functional forms of u, but the outcome is the same,

In light of earlier remarks expression 5.1.4 also gives the optimal
solution to 5.1.3 if p = O, or if some of the a(i) = 0. It is even
valid when the prices of undesired goods are zero, provided terms of
the form 0/0 are interpreted as zero. If, however, 6 a desired good is
free and the consumer has positive income, the purchase decision problem
is unbounded (since Jdu/dx(i) >0 for x >>0). For b > 1 such
problems are unbounded even if pu = O,

Despite the fact that the consumer's purchases cannot be specified
when desired goods are free, the economic model of Chapter 3 requires a
market demand correspondence defined for all price combinations. The
correspondence must satisfy certain technical conditions to insure that
the algorithm behaves properly. To meet these technical requirements,

artificial values are assigned to demand when desired goods are free.
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The following proposition indirectly justifies these assignments by

insuring that artificial values cannot be approached by demand labels,

5.1.5. PROPOSITION, The optimal solution & given in 5.1l.4
diverges to +» in norm as the prices of any desired goods approach zero

from above, provided p > 0 and the other prices remain bounded.

Proof. Let (pk) be an arbitrary sequence of prices converging to a
limit p°° having zero components corresponding to desired goods. It
suffices to show that (pk) has a subsequence along which Hgkﬂ 2o,

Let B = (i : good i 1is desired and p (i) = 0}. Since u > 0, it is
enough to show that for some 1 € B8, pk( i)b pk(j)l'b -0 for all j €8
along a subsequence. Suppose this does not occur, Then along every
subsequence, for each 1 € 8 there exists j € 38 s.t. pk( i)b pk{j)]'-b ~ 0.
Choose i, and i, from B s.t. pk( il)b pk( 12) ash /0, and then extract
a subsequence along which pk( il)b pk( i) Lk 2 €, 5 > 0. Now choose

13 €8 s.t. pk( iz)b pk(i.j) Li »0 along the sul,:sequence, and then
extract a further subsequence along which pk( ia)b pk(is)l'b 2 €2,5 > Q.
Continue to build the sequence il, 12, 1.3, ... until one of the ij is

repeated (this must occur since B is finite)., Consider the segment

ij, ij+1’ ceey 1, where ij = iz. Along the deepest subsequence




Pk(ij) Pk(ij+l) bl Pk(iz)

1-b

) Pk(ij)b oKi ylb ey yb ke b %1, )® o¥(1))

f) Pty

a8 W e

b

>
Z 5,541 €341 je2

But this contradicts the fact that pk(ij) oo pk(ig) - 0, thereby

establishing the proposition. a

When b <1 a direct calculation shows that §k(i) —»>o for
i € B regardless of the sequence (pk). In this case the preceding
argument is unnecessary. When b > 1 however, a given component Ek(i)
can be made to approach any positive limit or diverge to +x by a suitable
choice of (pk). The proposition shows that regardless of the sequence
(pk), some component §k(1) - +0 for i € B.

Enough preliminaries have now been established to permit the formal

specification of the CES consumption model for the family {g&(t)}

t € [0,1]°
M.

Each economy ¢g(t) contains M groups of consumers indexed j =1, ...,

Each consumer group is characterized by four sets of numbers:

(a) 1Initial commodity holdings wj(c) € RT‘LI;

(b) Revenue share factors Dj(t) € Rt’m;

(e¢) A CES utility function of the form 5.l1l.1 with substitution elasticity

bj(t) > 0 and weighting factors ag € RT*I\[O} ( for bj(t) =1
the Cobb-Douglas form 5,1.2 with ea; =1 is presumed);




——

(d) A matrix 0; € Rin-m)x(m+1) of ad valorem commodity tax rates.

Each row corresponds to a revenue system and each column to a

commodity,

The t-superscript (or argument) designates a consumer characteristic
that can be deformed across the family of economies.

The initial endowments and revenue shares determine consumer income.
At prices and revenue levels (x,r) consumer group j of economy ¢&(t)
has an income of ij(c) + rpj(t). This income is used to support con-
sumption and pay taxes. Given a consumption pattern x £ RT+1 the
expenditure for good i is nx(i) x(i), and the tax levied by revenue
system £ is °§(Z,i) n(1i) x(i). Consequently the effective price paid
for good i is pg(i) ={1 + e°§(-,i)) n(i). Faced with these effective

prices the consumer deploys his income so as to maximize his satisfaction,

The result is a demand response of the form 5.1.4  namely

(%5.1.6) §j(n,r,t) (§j(0; % o) PR §j(m; x,t,£))

where L
a, (1} aw . (t) + rp (t)
§j(i;ﬂ,r,t) = Jb (t) m . -
HEE T al(s) pje)tti(®)
and vl
p§(1)=(1+eo;(.,i)) r(i) | for 0<i<m.

As noted earlier the function Ej is well-defined only for effective
prices p§ which have positive components corresponding to desired goods

or equivalently for commodity prices n with the same property. In
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order to extend the definition to the entire cylinder § x T, let

Bt (i : good i 1is desired by some consumer in ¢g(t)}. Put

Foe
B ek

Expression 5.1.6 remains valid for (n,r,t) €(S x tRFBt. S?nce FBt |
depends on the preferences of all consumers in &(t), artificial values
may override the legitimate demands of particular groups. None of the
artificial values, however, can be used or even approached by the economic

algorithm because of Proposition 5.1.5 and the relationship between

consumer preferences and endowments assumed below.

= U, F,, and arbitrarily define §j(n,r,t) = Rf*l for (x,%, k) € FBt.

Consumption taxes are readily computed for values of (x,r,t) in

(S x ﬁRFBt. The (n-m)-vector of such taxes paid by consumer group j

of economy ¢g(t) 1is obtained by summing for each revenue system the

amounts levied on different commodities, i.e.,

=]

(5.1.7) ¢j(§j, 0y, B s izo ¢§(‘,1) n(1) §(i; x, ¥, €) .

For values of (r,r,t) in F ¢ 1t is necessary to assign artificial

p

values to taxes to satisfy certain technical conditions. For j

put ¢j(§j, X, ¢, £J =20 for (n, T, t) € FBt. As in the case of demands,

these artificial values never arise in computations.

The aggregate components which describe the consumption side of the
general economic model are obtained by summing their consumer-specific
counterparts over all consumer groups. The components in question include

initial endowments w(-.), the market demand correspondence =(.),

the consumer tax function @(.). They are defined as follows:
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(5.1.8) wit) = 3 wj(t) 5
5=1
M
(5‘]"9) E(K,r’t) = Z §,(K,L’,t) }.
j=1 -
M M
(5.1.10) ﬁ(i,n,r,t) = L p(¢,, n, r, t), where £ = D e
j:l J j J=1 j

The tax function @ 1is well-defined because the representation

b
t= T &,
=1 1

for (n.,r,t) € FBt.

is unique for (m,r,t) €(S x Thrat, and all taxes are zero

In order for these aggregate components to satisfy the conditions
assumed in Chapter 3, certain restrictions must be placed on the parameters
that characterize the consumer groups. Sufficient conditions are provided
by the following four assumptions.

5.1.11., ASSUMPTION, For each consumer group j =1, ..., M the

D)
parameters wj(t), pj(t), bj(t), ag, and 0; vary continuously in t.
5.1,12, ASSUMPTION., The set of goods desired by each consumer

group does not change throughout the family of economies.

M
5.1.15. ASSIMPTION. For each t € [0,1], T »,(t) = e.
)
5.1.14, ASSUMPTION. For any desired good i and index £ € {0,...,n}

distinct from i, there exists a consumer in g(t) who desires good i

and possesses a positive endowment (share) of good (revenue system) 2.
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The last assumption helps insure consistent behavior of = as it

diverges to +». It can be weakened somewhat, but not eliminated entirely.
The remainder of this section consists of demonstrating that w(-),
=(-), and @#(+) satisfy the most stringent conditions imposed in Chapter 3,

L Applicable conditions will be checked for each component in turn,

Properties of w(:.)

.4.1: Continuity follows from Assumption 5.1,11,

Properties of Z=(.)

First it is useful to note that because of Assumption 5.1.12 the
set Bt does not depend on t., The superscript will henceforth be
suppressed. Because of Assumption 5.1.11) = is continuous as well as

single-valued on (S x TXFs. On F_ the correspondence assumes the

artificial value RT*I.

=

.1(b): Degree zero homogeneity of X=(.,t) in (m,r) results from the

same property of each §

, which may be verified directly from 5.1.6.

j
.4.2(a): = is u.s.c. on S x T because it is single-valued and
continuous on (S X I)\FB and assumes all possible limiting values on FB'

m+ 1

.4.2(b): Each image set X=(x,r,t) is either a singleton or R+ and

’

is hence convex.
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3.4.2(c): Walras Law for n >> 0 follows directly from expressions

5.1.6 and 5.1.7 (Assumption 5.1.13 is required ac the end).
.4.2(d): All components of = are bounded below by zero.

3.5.2: Put g(a) = £a) N(S x ﬁ\FB. Since = is single-valued and
continuous on (S X koB, it is clearly l.s.c. and bounded on g£(Q).
Furthermore, since (§ X fAFB contains all points (x,r,t) in S x T
with 5 >> 0, part (a) also holds, It only remains to show that £(Q)

is closed. Consider any sequence (nk, rk tk) in £(@) converging

s
to a point (n,r,t) in S x T. Since ga) is closed (by u.s.c. of

Z), it must contain (n,r,t). Suppose (m,r,t) € @) N F At least

g
one component of (n,r) is positive, and at least one of the components
of “k corresponding to a desired good approaches zero, By Assumption
5.1.14 there is a consumer in ¢&(t) who desires the free good and has a
positive endowment (or revenue share) corresponding to the positive
component of (n,r). The income of this consumer is bounded away from
zero for large k, so by Proposition 5.1.5 his consumption, and hence

k k)

total consumption, diverges to +» in norm along (nk Tt

3 3 . This

contradicts the boundedness of = on g£(@). Hence (x,r,t) € gQ),

proving that the set is closed.

3.5.3: Diam_ Z(n,r,t) =0 for 5 >> 0 since = is single-valued at
these points.
The argument used to verify Condition 3.5.2 gives a precise meaning

to earlier remarks concerning the inaccessibility of artificial values
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of =. Specifically, any sequence of bona-fide values of = {e.g.
demand labels) diverges to +» in norm as prices approach areas where
artificial values are assigned. Since demand labels must remain bounded
(c.f. Step 7 of 3.4.15 and Step 8 of 3.5.4), the artificial values are

inaccessible.

Properties of ()

3.4.6(a): The non-negativity of P follows from that of ¢§ and =,

3,4.6(b): Consider a point (&,r,r,t) in U ZE(v) x {v}, and let

veE SXT

ko, ke ik ok s 2 : .
(¢, =, r, t) be a sequence in this union converging to (€, w,z,t).
If (n,r,t) €6 x n\Fﬁ’ then eventually (nk, rk, tk) <8 x T)IB because
Fﬁ is closed. Hence ﬁ(&k, nk, rk, tk) - @(&,n,r,t) by the continuity J
of §j on (S x T)FE and the continuity of Q; in t for 1< jSHM.
If (x,r,t) € Fﬁ’ then since §k — ¢ the argument used to verify
Condition 3.5.2 forces (nk, rk, tk) to eventually lie in FB. Hence

for large Kk, ¢(§k, B e tk) =0 = P(&,n,r,t).

) 2

.L.6(c): Since at least one good is desired by every consumer, all

points (0,r,t) 1lie in F Hence @(&,0,r,t) = O by definition.

g

5.4,6(d): Since = is single-valued on (§ X fKFB, @ is trivially
affine on ZE(v) x (v} for v €@ x tﬂfs. For v € Fﬁ’ ¢ is identically

zero on =(v) x {v] and hence affine there, too.
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All requisite properties of the market aggregates w(-), =(-), and

¢(.) have now been verified,

5.2. Activity Analysis Production

The production model described in this section is one of the
simplest possible examples of the general CRS technology postulated in
Chapter 3. Like conventional linear programs, the model treats production
as a finite set of activities operated simultaneously at non-negative
levels. Activities can use multiple inputs and produce multiple outputs,
Unlike most LP's, however, the entire technology matrix can be varied
parametrically.

Only two sets of parameters are required to specify the activity
analysis model, Let ¢t € [0,1] be an economy index, Production in g(t)
is characterized by
(a) N non-slack production activities xi, cniny x; € Rm*l;

(b) N matrices F;, seey F§ € Rin-m)x(n»l) of ad valorem production

tax rates,

The matrices are associated with the non-slack activities on a one-to-one

basis. Each row of F; corresponds to a revenue system, and each column

to a commodity, As required by the general model, free disposal is implicit

in the technology of every economy,
The non-slack production activities may be grouped together into
sectors or assigned to particular firms in any desired manner. Since

CRS technologies generate no profits at equilibrium, ownership patterns
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are irrelevant to economic behavior. For expository convenience, however,
the N activities available to each economy will be considered in this
chapter as separate sectors.

Collectively the individual sectors define the non-slack unit

activity correspondence

(5.2.1) e} = (55, ooy %)

Given a unit activity b € (t), the vector of unit tax liabilities

incurred by b at prices (x,r) is
s ot t
(5.2.2) r(b,n,r,t) = _20 r,(*,1) x(1) |x,(1)] ,
1=

where b = x If b resides in more than one sector, then the tax

t
2
rates in the overlapping sectors are required to agree. This insures
that y is well-defined, The constraint can be eliminated, however,
by the simple extension of the economic model described in Section 3.6.
To insure that /(-) and y(.) satisfy the conditions assumed

in Chapter 3, two restrictions must be placed on the defining parameters.

5.2.3. ASSUMPTION. For £ =1, ..., N the parameters x; and

F; vary continuously in t.

t
2

uses an input which cannot be produced in any economy in a neighborhood

5.2.4, ASSUMPTION. For each £ =1 ..., N the activity x

Y

t
NZ of ¢t.




The latter assumption prevents nearby economies from producing
something out of nothing, but is clearly much stronger than necessary to
achieve this effect. It has the advantage, however, of being easy to
check and is broad enough to encompass the numerical examples considered

in the next chapter,

The two preceding assumptions are sufficient to force /fB(:) and
v(-) into the mold of the general theory. Pertinent conditions will

be checked for B(.) and y(.) in turn.

Properties of /() }

5.4.3: Each xz for £ = 1, «v., N is a continuous function of t on

{0,1], and hence a continuous bounded correspondence. Thus /S(t), the
2 b )

union of these correspondences, is also continuous and bounded.

3.4.4: According to 5.2.4 each activity x, contains a component x;(i) <o

IS RSN

1
such that for 1 < j <N, xg (i) <0 on N,. Since x; is continuous
t ; et
; on which x, (i) <0, Let
t

N~ be the intersection of these sub-neighborhoods for £ =1

in t, there is a sub-neighborhood of N

!

b4

Then no collection of activities drawn from the economies spanned by

Nt can be operated at semi-positive levels without inputs., In view of

Remark 3.4.,5, Condition 3.4.4 holds. 2|

Properties of y(*)

.1(e): Degree one homogeneity of y in (n,r) is an immediate

consequence of y's linearity in these variables,

135




- i
e e

L4.7(a): Since Fi_z 0, the non-negativity of y is apparent from

Se.2.2.

.4.7(b): Consider (b,n,r,t) in U A(t) xS x (t}, and let
te€T

k k _k

o, ® o, BT tk) be a sequence in this union converging to (b,r, r t).

Clearly bk must lie in some sector £ infinitely often. Thus

bk = xtk -oxt
i 2
holds along this subsequence, so the continuity of Ft in t implies

£
k k k _k : : .
r(b", =, v, £7) =y(b,x,r,t). This suffices to establish the continuity

= b along a corresponding subsequence, Equation 5.2.2

of y on U A(t) xS x (t}.
teT
4.7(c): It is obvious from 5.2.2 that y(b,0,r,t) = 0.

All requisite properties of /& ¢) and y(.) have now been verified,
Before leaving this section it is worth mentioning how labels are computed
in the activity analysis model. Given a vertex (n,r,t) € S xT with
(n,r) >> 0, one simply evaluates nx; - er(xz, n, r, t) for each sector
Z 1in turn, stopping when a positive value is found. If no such values

are found, then a demand label is installed., Otherwise the label becomes

where £ 1is the first sector earning a positive after-tax profit.
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5.3. CES Production

The CES production model resembles the activity analysis model in

that every economy §g(t) admits a finite number of sectors. Each sector
of e(t), however, has available av;ontinuum of unit activities rather
than a finite number, This permits continuous substitution among input
factors as commodity prices vary. Ad valorem production taxes identical
to those of the previous section are imposed on all unit activities,

The technology of each sector is determined by a CES production
function of essentially the same form as the utility function employed
in Section 5.1. 1In a typical sector the m+l commodities are partitioned
into a non-empty set & of inputs and a non-empty set B of outputs.
Feasible production plans x € Ru”1 have non-positive input components

x(@) and non-negative output components x(B). Inputs and outputs are

related by
(5.3.1) x(B) = o(B) z(e, d, x(@)) ,

where o(B) 1is a fixed vector of non-negative output levels and

d/(d-1)
: d-1)/d
(5.3.2) (e, 4, x@) = [ T e(n)lxn) (/9
iex
is a scalar-valued CES production function. The parameters of 2z are
confined as in Section 5.1 to values that yield concave non-decreasing

functions, i,e., substitution elasticities d >0 and factor weights

¢ > 0. (The expression for 2z is superficially different from 5.1l.1 in
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that the weights are unexponentiated.) For d = 1 the Cobb-Douglas

form with ec = 1 1is used. Since any input with c¢(i) = O can be

reclassified as an output with o(i) = 0, all factor weights are assumed
to be positive.

Output proportions are unaffected by changes in inputs -- only
output levels vary. Moreover, the technology exhibits constant returns
to scale because of the degree one homogeneity of 2z in x(Q). Hence
the relationship between inputs and outputs may be completely summari;ed
by any set of "unit" activities consisting of one point along each ray

connecting the origin of Rm+1

with a feasible production plan. The
particular set of unit activities selected for use here are those lying
on the unit zw-sphere. Specifically, the non-slack unit activities

in a typical sector consist of the set

X(o(B), ¢, d) = (x € R™' ¢ x| = 1, x(@) <o,

and x(B) = o(B) z(c,d,x(@))} .

The general model presumes that all production plans in pos X(o(B),c,d)
are technically feasible, Actually only a few such plans satisfy 5.3.1.
It will later be demonstrated, however, that any activities from the
same sector appearing a§ labels will be virtually identical, provided
the vertices bearing the labels are close together, H;;ce any production
plan formed from such labels will closely resemble a true CES production

plan.
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The manner in which the activity set X(o(B), ¢, d) moves in

response to changes in the defining parameters is of interest in deter-
mining the kinds of deformations possible in the CES model. The following
proposition insures that X(:) possesses sufficient regularity to

tolerate a wide range of technoloéical deformations.

5.3.3. PROPOSITION, The set X(o(B), ¢, d) varies continuously
as a correspondence in o(s), ¢, and d over all values of o(B) >0,

d>o, and ¢ > 0 s.,t., ec =1,

Proof: Upper semi-continuity will be demonstrated first., Let
(ok(ﬂ), ck, dk) be a sequence of admissiblz parameters converging to
the admissible triple (o(B), ¢, d), and let x5 x where

= e X(ok(B), & dk). Clearly ||x’,|m =1 and xn(@) < 0. Since

’

xk(a) - x(B) and ok(B) = 0o(B), all that must be established is that

z(<:k dk, xk

s

(@) »z(c, d, x(@)). For d >1 Expression 5.3.2 is
jointly continuous in (¢, d, x(X)), so the desired convergence takes
place, For d < 1 the same reasoning applies when x(Q) << 0. If

some component of x(Q&) 1is zero, replace that comporent by ¢ >0,

k

and the resulting expression dominates z(c , dk, xk(a)) for large k.

As k -« the dominating expressinn converges in the normal manner.

By shrinking ¢ -0, lim sup z(ck dk, xk(a)) is forced down to zero,
k 9

which is the imputed value of z(c, d, x(@)).

)

For d = 1 separate arguments are required for subsequences of

(dk) less than, equal to, and greater than one. The case where c:lk

"
—
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is trivial., The other cases may be handled by sandwiching z(ck, ak xk(a))

?
between two similar expressions with constant input levels and weights.
The bounding expressions converge to Cobb-Douglas forms as k - ® via

L'Hospital's rule, and the limiting sandwich collapses to the desired

value. The sandwich is comstructed from input levels (|x(i)| + e)+ and
factor weights c(i) + & where the plus (minus) sign applies to weights
on perturbed input levels above (below) the median., The condition " = 1
makes the weight perturbation work. The detailed argument is quite
tedious and hence omitted.

Lower semi-continuity is established next. As above suppose

(ok(B), ck, dk) converges to (o(B), ¢, d), and let x € X(o(B), ¢, d).

Define x%(Q) = x(2) and let x(p) = oX(B) z(c¥, ¥, x¥(@)). Then

k

b

J

xk/kall°° belongs to X(ok(a), c dk), and by the same reasoning used

to establish convergence in the upper semi-continuity proof, xk(B) - x(B).

Hence x° - x, and since ilx[lm = I, xk/llxk“m - X, a

Now that the technology of a typical sector has been investigated,
a comprehensive specification of the CES model is possible. Each economy

gt) for t € [0,1] has N production sectors indexed £ = 1 N.

y *eey

Each sector is characterized by the following parameters:

(a) Non-empty sets of inputs Q, and outputs_ 32 satisfying

x, UB, = {0, ..., m}. (Note that these sets are independent of t.)

card By

% of unit output levels,

(b) A vector o;(Bz) €R
(¢) A CES production function of the form 5.3.2 with substitution

elasticity dz(c) >0 and factor weights CE(QZ) satisfying

t t
cz >> 0 and ec, = 1.
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(d) A matrix P; € Rin-m)x(m+1) of ad valorem tax rates. Each row

corresponds to a revenue system and each column to a commodity.

In terms of these parameters, sector / of economy e(t) possesses
a non-slack unit activity set Bz(t) = x(og(ﬁz), cz, dz(t)). Combining
these activity sets for all sectors yields the economy-wide activity
correspondence /3(t) = 51 Bz(t). As always the activities in [(t)
are complemented by thez=m+1 free disposal activities,
Given a production plan b € 5(t), the vector of unit tax liabilities
incurred by b at prices (x,r) is
m
v(bx,r,£) = T Ty(-,1) (1) Ip()]
i=0
where b € E&(t). If b belongs to more than one sector, then the tax
rates in the overlapping sectors are presumed to agree. As noted in
the previous section this restriction can be lifted by extending the
general model in the manner described in Sectiom 3.6,

Sufficient conditions for /5(-) and y(-) to satisfy all require-

ments of Chapter 3 are contained in the following two assumptions,

5.3.4. ASSUMPTION. For £ =1, ..., N the parameters 02(53),

)

t t .
cz(az), dz(t), and r, vary continuously in ¢,

5.3.5. ASSUMPTION, For each sector £ and economy ¢g(t) there

is a neighborhood N; of t and a set of inputs, at least one of which

is used by every activity in sector £ for all economies in N

t
z.

t

2 and

which cannot be produced by any economy in N
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The latter assumption, like its counterpart in the activity analysis

section, is much stronger than necessary to insure technical realism,
yet broad enough to cover a wide class of examples, With these assumptions
in hand the activity correspondence /3(-) and tax function y(.) are

readily shown to fit the pattern of the general model,

Properties of /()

3.4.3: Proposition 5.3.3 in conjunction with Assumption 5.3.4 implies

that é&(-) is a continuous correspondence w.r.t. t. Since the images
ﬁk(t) lie on the unit zm-sphere of Rm+1, Gk(-) is also bounded.
Consequently the union /(-) 1is continuous and bounded.

N

L.bh: Let Nt = n N, and consider any set of activities drawn from
el &

EKNt). By Assumption 5.3.5 each activity in the set requires an input
which cannot be supplied by the others. Hence no combination of the
activities can be operated at positive levels in the absence of external

resources. In view of Remark 3.4.5, Condition 3.4.4 holds.

Properties of y(-)

The tax function y is identical in form to the one defined in the

previous section and exhibits the same properties for exactly the same

reasons,

The process of generating labels for the CES production model is

much more complicated than the activity analysis model because of the

continuum of unit activities in each sector, The object, of course, is
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the same: given a vertex (n,r,t) with (x,r) >> 0, find an activity
in A(t) with positive after-tax profits or show that none exists. The
search for a profitable activity mws t be conducted on a sector-by-sector
basis.,

Consider the after-tax profitability of a unit activity x in

sector £ of economy &(t). At prices n >> 0 activity x earns

{5.3.6) nx - er(X,n,r,t)

m
nx - L eM,(+,1) x(1) [x(1)]
i=0

n(B) x(B) - 7. el(-,i) =(i) [x(i)]

i€ep

+ n(e) x(@) - % er(-,i) n(i) |x(i)] ,
i€

where the subscript £ and superscript t have been suppressed in the
last expression (and will continue to be). The sign of 5.3.6 is clearly
the same for all positive multiples of x., Suppose the substitution
elasticity d > 1, Then Hx"m =1=3x £0=>x(Q) £0=z(c,dxa) >0=>a
positive multiple X of x exists such that 2z(c, d, X(@)) = 1. Hence
the search for a profitable activity in this sector may equally well take
place on X' = {x € ek x(B) = o(B), x(@) <0, and z(c,d x(x)) = 1}.
The same conclusion holds for d < 1 but for slightly different

reasons. Since z(c, d, x(@)) >0 for x(Q) << 0, points in X(o(B),c,d)

b
with x(@) << 0 may be scaled to lie in X', If however, x(i) =0
for some i € & then x(B) = 0, and it is clear from 5.3.6 that the

profitability of x is non-positive. Hence such points may be excluded

from the search,
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The problem of finding a profitable activity in the set X' |is

much easier than finding one in X(o(B), ¢, d). In fact the most profit-
able activity in X' is easily calculated, Since outputs are constant
on X' 6 the problem reduces to finding the input mix which minimizes

factor costs and taxes, i.e.,

(5.3.7) minimize p(a) x(a)
subject to z(e, 4, x(c)) = 1
x(@) >0,

where the x(@) are absolute input levels and p(i) = (1 + el(-,6i)) (i)
for i € @ are effective prices (including tax) paid for the inputs,

Since 2z increases with =x(@) and since inputs cost money, the equality
constraint in 5.3.7 can be relaxed to 2z(c, d, x(@)) > 1 without affecting
the solution. The result is a nice convex program differentiable for

x(@) >> 0. Analyzing the Kuhn-Tucker sufficient conditions for this

program yields a unique cost minimizing solution

= d/(1-d)
(5.3.8) x(1) = [ %%). ] [ i)éa C(i)d p(i)l‘d]

for i €@ and d £ 1. If d =1 the limiting form

(5.3.9) %(1) = o) 1 [ p(i) ]c(i)

P(1) jeq

c( i)

must be used,




The profit maximizing activity in the set X' is  therefore,

x* = (x¢(B), x*(q)) = (o(B), -X(@)) .

If x* shows a positive after-tax profit, as measured by 5.3.6, then the
rescaled unit activity x*/llx*ll°° € X(o(B), ¢, d) together with its taxes
may be taken as the production label. If, however, x* earns a non-
positive profit, then so does every unit activity in X(o(B), ¢, d), and
the current sector must be bypassed in the label search. As was the

case in the activity analysis model, the search proceeds sector-by-sector
until a positive profit is found or until the sectors are exhausted.

The discrepancy noted earlier between the true CES production set
D\Bz(t) : A\ >0} for sector £ of economy & t) and the set pos Bz( t)
assumed in the general model disappears for all practical purposes due
to the nature of the labeling. One can show through arguments similar
to those used to establish Proposition 5.3.3 that the optimal input mix
x(a@) given in 5.3.8 and 5.3.9 varies continuously in (n,r,t) provided
n >> 0. (Recall that the t and f/-parameters are suppressed in these
expressions.) Consequently the label candidate x*/"x*||°° is also
continuous in (x,r,t). Whenever two or more such candidates are used
to label an n-simplex encountered by the economic algorithm, then provided
the n-simplex has a small diameter (as is customary along approximate equi-
librium graphs),6 the labels will be virtually identical. Hence any pseudo-
production plan determined by these labels will approximate some member

of [\E%(t') : A\ >0} for all economies £&(t') near g(t).
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CHAPTER 6

COMPUTATIONAL EXPERIENCE

The thrust of the preceding chapters has been to develop the theory
of a computational algorithm which, when implemented on a computer, can
generate explicit numerical approximations to equilibrium graphs. The
purpose of the present chapter is to describe the outcome of a series of
numerical experiments in which programs implementing the algorithm were
used to compute approximate equilibrium graphs for explicitly deformed
economies, The results of these experiments are presented from two per-
spectives, First, operating statistics such as precision of approximation
and measures of computational effort are tabulated and analyzed. Second,
porfions of selected equilibrium graphs are displayed and interpreted,

In keeping with the methodological orientation of this study, primary
emphasis is placed on the former perspective.

The computer programs were applied to approximately twenty test
problems, of which thirteen are reported here, (The others involved
single economy runs or runs with the identity deformation.) All thirteen
problems are special cases of the production and consumption models pre-
gented in Chapter 5. Although limited in scope relative to Chapter 5's
possibilities, these examples nevertheless typify the empirical models

currently (1975) in use. Among them can be found deformations of every

major component of the general economic model except consumer taxes,

Some of the problems reconstruct John Shoven's analysis of the effects

of differential capital income taxation in the U.S, The results of these

16
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experiments confirm that the pairs of equilibria compared by Shoven are
connected by equilibrium graphs spanning the evenly and unevenly taxed
economies,

The overriding message that emerges from the numerical experiments
is that approximating equilibrium graphs with precision involves a
tremendous amount of computational effort. Tens and perhaps hundreds of
thousands of iterations are required to solve models of even modest size.
The final section of this chapter identifies the major factors responsible
for this unwonted behavior, and concludes that such computations are
inherently expensive because of the vast amounts of information represented

by densely defined equilibrium paths.

6.1, Description of Test Problems

The thirteen test problems were derived from three basic economic
models by subjecting each to various deformations. Many of the problems
exclude the revenue systems of the basic model and hence fall under the
first variation of the general theory described in Sectiom 3.6. Apart
from the absence of revenue systems, each test problem fits two of the
three formulations presented in Chapter 5, and will hence be specified
in terms of the relevant Chapter 5 parameters.

The deformations in all test problems result from linear changes
in the defining parameters. Hence each family of economies [e(t)]te [0,1]
is completely specified once the parameter values for g(0) and g(1)
are known. Since many parameters have the same value at both endpoints,
the most efficient procedure is to display all parameters for ¢€(0) and

then identify the ones that change during the deformation.
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The first basic economic model is the six-commodi:y hypothetical
economy appearing in Section 5.3 of Scarf's monograph [15]. The model
features activity analysis production in a single time period setting.
No revenue systems are included, The commodities traded in the model

have the following interpretations:

P e g

Commodity Description
(o] Capital available at end of period |
|
1 Capital available at beginning of period :

Skilled labor |
Unskilled labor

Nondurable consumer goods

A R " I V)

Durable consumer goods

Five groups of consumers participate in this hypothetical economy.
Their behavior for ¢(0) is characterized by the parameters displayed

in Tables 6.1.1, 6.1.2, and 6.1.3. No revenue share factors or consumer

tax rates are needed since no revenue systems appear in the model.
Initial holdings exist for all commodities except non-durable
consumer goods and end-of-period capital. Each consumer is endowed with
the potential to provide a fixed number of hours of labor services. Any
portion of the labor endowment, however, may be consumed as leisure,
According to conventional measures of wealth, consumer group 5 with 6.0

units of beginning capital is the richest, while group 2 with 0.1 units

‘is the poorest, (These holdings will be reversed in one of the test

118




TABLE 6.1.1, Initial Endowments wj(o)

Consumer Group

1 2 b) i 5
0 0.0 0.0 0.0 0.0 0.0
1 3.0 9.1 2.0 1.0 6.0
2 5.0 0.1 6.0 0.1 0.1
Commodity
0.1 7.0 0.1 8.0 0.5

TABIE 6.

1.2,

Demand Intensities

Consumer Group

2

3

4

Commodity

k.0

0.4

2.0

5.0

3.0

B L ——
o S T
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TABLE 6.1.3., Substitution Elasticities bj(o)
Consumer Group

1 2 2 L 5

1.2 1.6 0.8 0.5 0.6

problems.) All goods except beginning capital are desired by at least
one consumer,
The production side of the economy is represented by an activity

analysis matrix consisting of eight non-slack unit activities. The

€(0) coefficients for these activities are shown in Table 6.1.4. No

producer taxes are included in this formulation. The activities are

TABLE 6,1.4., Unit Production Activities xg

Non-Slack Activity

1 2 3 N 5 6 T 8

o] 4.0 4.0 1.6 1.6 1.6 0.9 7.0 8.0
1183 5,06 =20 80 B0 1.0 =40 5.0
2l-2,0 -1.0 -2,0 =-4.0 -1.0 0.0 -3.0 -2.0

Commodity |
-1.0 -6.0 -30 -1,0 -8.0 0.0 -1.0 -8.0 ;

+ W

0.0 0.0 6.0 8.0 7.0 0.0 0.0 0.0

5( 4.0 23 0.0 0.0 0.0 0.0 0.0 0.0
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grouped into three sectors: a durable goods sector consisting of activities
1 and 2; a non-durable goods sector consisting of activities 5, 4 and 5;
and a capital formation sector consisting of activities 6, 7, and 8. All
sectors use varying amounts of labor and beginning capital as inputs,
and generate ending capital as a by-product,

Starting with the above values for ¢g(0), linear deformations were
applied to selected parameters to yield three test problems, The deforma-
tions alter resource ownership, consumer tastes, and production technology.

Parameters affected by the deformations are noted below for each problem.

Test Problem 1

The initial endowments of beginning capital held by the "richest"
and "poorest" consumers are reversed. Thus in §g(1l) consumer group 2

holds 6.0 units of beginning capital while consumer group 5 holds 0.1 units,

Test Problem 2

The substitution elasticities of all consumer groups are deformed

to the Cobb-Douglas value of 1.0.

Test Problem 3

The productivity of labor in all sectors is doubled. This is

accomplished by cutting the labor input coefficients in half, i.e., for

; 1 L O,
oo, 8 and i=2, 3, x,(i) =35 x,(1).

£ =1

b
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The three test problems satisfy all the applicable conditions of
Chapter 5 except 5.1.14. This condition is violated because no consumer
owns an initial endowment of ending capital or non-durable goods. The
breach of this condition, however, had no discernable effect on the
performance of the algorithﬁ because all prices along the equilibrium
graphs were positive. (The condition serves only to prevent pathological
behavior of demand as the prices of desired goods approach zero.) If
difficulties had arisen, the benefits of Condition 5.1.14 could have
easily been secured by a negligible adjustment to initial endowments,
such as assigning holdings of 0.000001 in goods O and L4 to each
consumer group,

The second and third basic economic models are, respectively,
the four and fourteen commodity empirical models of the U,S. economy
used by John Shoven (and John Whalley) to estimate the efficiency loss
induced by unequal rates of taxation on the income from capital employed
in different economic sectors [16], [17], [18]. Both models are based on
the same empirical data. They differ only in the number of sectors into
which the data are aggregated (two versus twelve). CES production
functions are used to describe the technology in each case,

Both models incorporate a single revenue system, Prices and revenue
levels are scaled, however, to lie on the transformed simplex
S' = {(n,r) € R:+1 : enr + 0,026905r = 1} rather than the standard simplex
S. One can easily verify that the theory of Chapters 2, 3, and 5 remains
intact with S' replacing S. As for manifolds on S'x[0,»), one need

only multiply the r-component of each abstract vertex in S x [0,») by
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the reciprocal of 0.026905 to obtain an equivalent vertex in

S' % [0,@).
Owing to the scarcity of empirical data, some of the parameters in
Shoven's models had to be estimated exogenously., Such parameters were

typically assigned a range of likely values, each resulting in a separate

‘version of the models. Of the many cases comsidered by Shoven, five were

selected for analysis here.
The detailed specification begins with the four-commodity basic
economy and its attendant test problems. The goods comprising this model

may be described as follows:

Commod ity Description
0] "Non-corporate" outputs
1 "Corporate" outputs
2 Labor
3 Capital

The terms 'corporate" and '"non-corporate' are merely suggestive; a more
meaningful description of these categories will be provided when the
disaggregated model is introduced.

U.S. consumers are divided into two large groups, one representing
the upper ten percent of all income recipients and the other the lower
ninety percent, The behavior of these groups for ¢€(0) is determined
by the parameters contained in Tables 6.1.5 through 6.1.8. Consumer tax
rates 0? for j = 1, 2 are not shown in the tables because they are

identically zero.




TABLE 6.1.5. Initial Endowments wj(O)

Consumer Group

1 2
0 0.¢ 0.0
1 0.0 0.0

Commodity

2 | 49.3959 167 .9461
3 | 16.8416 5.2624

TABLE 6.1.6. Revenue Shares oj(o)
Consumer Group

1 2

0.4 0.6

TABLE 6.1.7. Demand Intensities s

Consumer Group j
1 2
0| 0.1> 0.15874kL
1| 0.875 0.841256

Commodity
2 0.0 0.0

0.0




TABLE 6.1.8. Substitution Elasticities bj(O)

Consumer Group

1 2
Cl 0.5 0.5
Version
: c2 1.0 1.0

Initial holdings exist only for the input factors labor and capital.
Finished goods are the only ones desired. Consumers, therefore, sell
their entire endowments to producers and forego any labor-leisure choices.
Factor supplies are thus effectively fixed. Consumer substitution
elasticities had to be estimated exogenously,6 resulting in the two versions
shown in Table 6.1.8. These will be combinedwith different versions of the R
production parameters to synthesize test problems,

Production in the four-commodity economy proceeds according to the
CES model of Section 5.3. Two production sectors are involved. Each
uses the two inputs labor and capital, so a1=<22 = {2,3}. The output
sets for the two sectors nominally consist of goods O and 1, Each
sector, however produces only one item, so the unit output vectors
o:(ﬁz) are actually multiples of the unit vectors e, & € R2. Factor
substitution elasticities had to be estimated exogenously and were then
used to derive the other parameters. Consequently Tables 6.1.9, 6.1,10,

and 6.1.11 each contain three versions of the CES production parameters

for ¢g(0).
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TABLE 6.1.9. Non-zero Components of Unit Output Vectors °2(53)

Commodity
Sector Produced Version P1 Version P2 Version P3
1 0 2.45070 2.44778 2.44778
2 1 1.96723 1.76534 1.54519

0
TABLE 6.1.10. Input Weighting Factors cz(o%)

Version Pl Version P2 Version P3

Sector Good 2 Good 3 Good 2 Good 3 Good 2 Good 3

e S

1 0.39394 0.60606 0.35323 0.64677 0.35323  0.64L67T
2 0.79251 0.20769 0.88607 0.11393 0.96999 0.03001

TABLE 6,1.11, Substitution Elasticities dz(o)

Sector Version PI1 Version P2 Version P3
1 0.99999 0.25 0.25
2 0.99999 0.75 0.50

The presence of a single revenue system in the model means that the

t ¢
matrix [, of production tax rates for sector £ collapses to a vector,

£
All components of this vector are zero except the component corresponding f
to capital inputs. The non-zero component approximates the combined

burden of corporate income, local property, and personal income and
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capital gains taxes borne by capital employed in sector £. The burden is

expressed as a fraction of net income received by consumers from the

sale of their capital endowments to sector £. The tax rates were derived
independently of the substitution elasticity estimates and are hence the
same for all three versions of the production parameters, Different

rates are assigned to §g(0) and g(1l), however, reflecting the empirically
observed (unequal) values and a set of hypothetical equalized values,

Both sets of rates are displayed in Table 6.1.12,

TABLE 6.1.12, Non-zero Components of Production Tax

Vectors Pg and F;

Sector Commodity Economy O Economy 1

1 3 0.45169 0.45169
2 3 1.22112 0.45169

A total of seven test problems were derived from the four-commodity
models. Four of these suppress the revenue system and hence conform to
the first variation of the general theory described in Section 3.6.
Different versions of consumption and production parameters are used in
the seven problems, Sometimes the parameter sets are switched during

the course of the deformation., Other times the deformation involves more

fundamental changes in the economies,




Test Problem 4 (revenue system excluded)

Consumption parameters Cl and production parameters Pl determine
€(0). The deformation consists of replacing the Cl parameters by the

C2 set (c.f. test problem 2),

Test Problem 5 (revenue system excluded)

The initial economy is the same as in Problem 4. Under deformation
both the production and consumption parameters are replaced by the C2

and P3 versions, respectively.

Test Problem 6 (revenue system excluded)

The initial economy is characterized by consumption parameters Cl
and production parameters P2. The deformation interchanges the capital

endowments of the two consumer groups (c.f. test problem 1).

Test Problem 7 (revenue system excluded)

The initial economy is the same as in Problem 6. The deformationm

depletes the capital endowments of both consumer groups by one-half.

Test Problem 8

The economic parameters and deformation are the same as in Problem 5.

This time, however, the revenue system is included, but with zero values

for tax rates and revenue shares.




Test Problem 9

Consumption parameters Cl and production parameters P3 are in

effect for all economies. The deformation consists of reducing capital

taxes from the ¢g(0)

Test Problem 10

This problem is

production parameters

One can readily
above satisfy all the
Condition 5.1.14, As

this violation caused

to the ¢(1l) values.

identical to the preceding one except that the P2

are used throughout,.

verify that the seven test problems described
requirements of Sections 5.1 and 5.3, except
was the case in the first series of test problems,

no practical problems for the algorithm, and could

have easily been fixed if it did. .

The fourteen-commodity basic economic model is quite similar to the

four-commodity one, the only difference being the disaggregation of

"corporate" and "non-corporate' outputs into a total of twelve components,

Labor and capital are still the only factors of production, The full

list of commodities comprising the larger model is given below.

Commodities O through 2 were previously aggregated into 'mon-corporate"
outputs, while goods 3 through 11 constituted the 'corporate" sector.

The same consumer groups participate in the disaggregated economy
as in the aggregated one, Consequently many of the same parameters apply.
Revenue shares, substitution elasticities (both versions), and consumer

tax rates (all zero) are identical in the two models. 1Initial endowments
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Commodity Description
0 Agricultural products
1 Real estate
2 Crude o0il and gas
3 Minerals (other than oil and gas)
b Contract construction
5 Manufactured goods (other than 6 and 7)
6 Lumber and wood products
0 Petroleum and coal products
8 Trade
9 Transportation
10 Communication and public utilities
11 Services
12 Labor
13 Capital

differ only in the indices of commodities. Demand intensities, however,

are more numerous in the larger model. Tables 6.1.13 and 6.1.14 (the

‘counterparts of Tables 6.1.5 and 6.1.7) contain all consumer parameters

peculiar to the fourteen-commodity model.

The production side of the disaggregated model also resembles that
of the aggregated one. The main difference is that twelve rather than
two sectors are involved, Each sector uses labor and capital as inputs,

SO Q= eve =, = (12,13}, The remaining commodities are nominally
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TABLE 6.1.13, Initial Endowments wj(O)

Consumer Group

)L 2

0-11 0.0 0.0
Commodity 12 49.3959 167.9461
13 16.8416 25,2624

TABLE 6.1.14. Demand Intensities a?

Consumer Group

1 2

o | 0.045889  0.058277

-
o

.071304  0.090553
0.007807  0.009915
.0l1155  0.010725
0.061966 0.059576

= W n
o

0.361741 0.347791
Commodity 0.010905 0.010485
.016906 0.016254

0.188992 0.181704

O ©0 N o I
(@]

0.058137 0.055893
10 0.048154 0.046297
11 0.11704L4 0.112530




classified as outputs for all sectors, although only one is actually
produced in each. The full contingent of production parameters for the
larger model appears in Tables 6.1.15 through 6.1.17. The two versions
shown there correspond to versions Pl and P3 in the smaller model.
These tables, together with the tax rate Table 6.1.18, constitute the

fourteen-commodity counterparts of Tables 6.1.9 through 6.1.12,

TABLE 6.1.15. Non-Zero Components of Unit Output
0
Vectors oz(Bz)

Commodity
Sector Produced Version Pl Version P3
1 0 2.34529 2. 14890
2 1 2.38220 2.20603
. 2 2.06809 L.74965
4 3 1.99859 1.56676
5 4 1.33739 L1552
6 % 2.15266 1.65283
T 6 1.94499 1.59951
8 i 2.67648 2.67633
9 8 1.86323 1.51114
10 9 1.77489 1.39553
11 10 3.08310 2.70408
12 11 1.30L459 1.12974
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TABLE 6.1.16. Input Weighting Factors cg(az)

Version Pl Version P3

Sector  Good 12  Good 15  Good 12  Good 13
1 0.54051 0.45949 0.8469L 0.15306
2 0.27152  0.72848  0.05835  0.94165
3 0.65054  0.34946  0.95962  0.04038
L 0.78607 0.21393 0.96811 0.03189
S 0.93311  0.06689  0.99739  0.00261
6 0.76350 0.23650 0.96349 0.03651
7 0.77163  0.22837  0.95236  0.0476k4
8 0.37874  0.62126  0.38391  0.61609
9 0.80001 0.19999 0.96715 0.03285
10 0.83993  0.16007  0.98451  0.01549
11 0.53260 0.467L40 0.76703 0.23297
12 0.93981  0.06019  0.99784  0.00216




TABLE 6.1.17. Substitution Elasticities d,(0)

Sector Version Pl Version P3

1 0.99999 0.25

2 0.99999 0.25 .
3 0.99999 0.25

L 0.99999 0.50

5 0.99999 0.50

6 0.99999 0.50

7 0.99999 0.50

8 0.99999 0.50

9 0.99999 0.50 i
10 0.99999 0.50

11 0.99999 0.50

12 0.99999 0.50
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TABLE 6.1.18. Non-Zero Components of Production Tax

(o] 1
Vectors Fz and Fz

Sector Commodity Economy O Economy 1

1 13 0.42441 0.42441
2 13 0.47526 0.42441
3 13 0.25551 0.42441
" 13 1.24837 0.424k41
5 13 0.96546 0.42441
6 13 1.55182 0.42441
i 13 0.75122 0.42441
8 13 0.67663 0.42441
9 13 0.83978 0.k2u441
10 13 1.30895 0.4k2u41
11 13 1.53576 0.42441
12 13 0.89282 0.42441

The last three of the thirteen test problems are based on the four-
teen-commodity model. As in the case of the smaller model, different
combinations of consumption and production parameters are used to define
the economies. Each of these problems duplicates one of the four-commodity
examples in terms of the parameter sets employed and the deformation applied.

Consequently each will be specified via reference to its predecessor.

165




Test Problem ll (revenue system excluded)

Refer to Test Problem L.

Test Problem 12 (revenue system excluded)

Refer to Test Problem 5.

Test Problem 13

Refer to Test Problem 9.

A summary of the distinguishing characteristics of the thirteen

test problems appears in Table 6.1.19.

6.2. Behavior of Algorithm on Test Problems

The thirteen test problems were solved using a group of computer

programs fashioned after the outline presented in Section L.k. Different
programs handled the two types of production and the examples with and
without revenue systems., The programs were written in IBM's version of
FORTRAN IV and compiled using the H-level compiler with optimization
option 2 (to minimize execution time). The longest program contains
more than 2000 FORTRAN source statements.

The machines used to run the programs were the IBM 360/91 and the
two IBM 370/168's located at the Stanford Linear Accelerator Center,
These are among the most powerful central processing units commercially
available, and their power was fully utilized by the larger test problems,

All but one of the problems was allocated four minutes of CPU time, yet
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this proved insufficient for two of them to run to completion (i.e., reach

&(1)). The unrestricted problem consumed 21 minutes of CPU time.

Various operating parameters had to be set for each run of the
programs, These were typically adjusted by trial and error until accept-
able values were found. The basis of the linear inequality system was
_ re-inverted every 20 or 30 iterations to maintain accuracy. This proved
adequate even though some columns of the basis (representing CES produc-
tion activities) differed only in the seventh decimal place of a single
component., Full equilibrium reports were produced each time the economy
index changed by 0.1, Consequently eleven snapshots (minimum) were
taken of the equilibrium graph during each complete rum,

The most sensitive operating parameter turned out to be the economy
index scaling factor. This constant converts vertical movements in
the cylinder S x [0,x) (above the threshold level 2I) into changes in .
the economy index., Egquivalently,6 it alters the vertical spacing of grid
points. Hence it providés a means of balancing incremental shifts in
economic behavior due to deformation against those caused by price changes,
For large values of the scaling factor (above 1000), the algorithm floundered
about the ¢g(0) level, apparently unable to digest the relatively large
deviations inherent in a vertical step. An exception to this behavior
was observed in the examples (not reported here) involving the identity
deformation. In these problems the algorithm proceeded directly to g(1).

Like conventional equilibrium and fixed point problems, however, K the

labels in these examples do not change as a function of height,
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For small values of the scaling factor (less than 20), the algorithm

proceeded smoothly up the cylinder. 1Its rate of progress through the
economies, however, was so slow that it seldom got beyond £(0.1) before
the allotted time expired. The optimum value appeared to lie in the
range of 100 to 150. The smaller values yielded better performance in
problems involving relatively "severe' deformations, and conversely.
Scaling factors near the optimum value were used in the runs summarized
below.

Another sensitive set of operating parameters were the range error
tolerances described in Section 4,3, Virtually all the components of
range error observed in the equilibrium reports for the thirteen test
problems satisfied the loose tolerances. Roughly half satisfied the
central tolerances, while very few satisfied the tight tolerances. Often
a single critical commodity appeared to determine the outer limit of grid
size. These findings indicate that the dynamic control mechanism was
successful in maintaining relatively uniform levels of range error along
the approximate equilibrium graphs.

On the whole the market tolerances tended to be harder to satisfy
than the profitability tolerances., Cutting market tolerances in half
frequently reduced profitability errors by an order of magnitude.

Tighter tolerances of either type resulted in finer grids and hence more
iterations, The tolerances used in the runs reported below represent a
compromise between accuracy and computational expense,

Detailed statistics from the best runs of the thirteen test problems

are displayed in Table 6.2.1. A quick glance at this table reveals several
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TABLE 6,2.1. Computational Statistics

Market
Profit Tolerances Grid Size
# Gouds Tolerances (%) Iterations Index (x 10°7)
+ -Loose -Loose Iterations At of -Maximum
Test Revenue -Central -Central At Final Final -Average* # Manifold CPU-Time CPU
Problem Systems -Tight -Tight Economy 0 Economy Economy -Minimum Blocks (Minuces) Type
1 5§~ 0.0005 0.5 22 6,431 1.01 153 4 2.66 360/91
0.0001 0.1 150
0.00001 0.01 76
2 5 0.0005 0.5 u22 17,472 1.01 153 L 0.86 360/91
0.0001 0.1 130
0.00001 0.0l 76
3 6 0.0005 0.5 u22 161,009 0.97 610 30 4,00 370/ 166
0.0001 0.1 200
0.00001 0.01 76
N L 0.001 1.0 201 4,471 1.0l 510 3L 0.12 370/ 168
0.0005 Q0.5 200
0.0001 0.1 76
5 L 0,001 1.0 201 21,7L0 1.03 610 o4 0.54 370/ 168
0.0005 0.5 0
0.0001 0.1 155
6 L 0.001 1.0 213 4,453 1.02 510 4l 0.12 370/ 168
0.0005 0.5 230
0.0001 0.1 76
7 L 0.001 1.0 213 £8,u87 1,01 305 159 1.55 370/ 168
0.0005 0.5 170
0.0001 0.1 76
3 5 0.001L 5.0 170 11,536 1,06 1,221 10 0.28 Jro/ 168
0.0005 1.0 370
0.0001 0.3 510
3 b 0.001 5.0 308 15,536 1.01 2,4ul 16 0.43 370/ 168
0.0005 1.0 1,000
0.0001 0.3 76
10 5 0.001 5.0 311 15,540 L1l 2,4kl 16 0.:2 370/ 16¢
0.0005 1.0 1,200
0.0001 0.3 510
11 1i 0.001 2.0 4,825 24,103 1.03 510 34 2.23 260/91
0.0005 1.0 330
0.0001 0.5 15
12 1 0.001 2.0 4,823 42,502  0.20 1,221 20 4.00 260/91
0.0005 1.0 s00 |
0.0001 0.5 305 ‘
13 15 0.001 5.0 13,768 206,355  1.08 1,221 6 21.33 360/91 -
0.0005 1.0 290 £
0.0001 0.3 305
.
Approximate, -
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numbers that are strikingly disproportionate to those normally encountered
in equilibrium and fixed point calculations, Most notable are the total
numbers of iterations required to solve the problems. These range from
a few thousand to hundreds of thousands, with the majority lying in the
tens of thousands range. The number of iterations required to reach an
approximate equilibrium for €(0Q) account for an insignificant fraction
of the total. Yet these seemingly negligible values are the ones that
should be compared with the results of traditional problems of this size,

The principal explanation for the inordinately large numbers of
iterations can be found in the column entitled "Grid Size". The manifold
mesh required to satisfy the specified tolerances ranged from ten-thousandths
of a unit down to millionths, with typical values in hundred- thousandths.
Such tiny simplices are rarely encountered in equilibrium or fixed point
calculations, outside of Newtonian termination or acceleration routines,
Yet the economic algorithm had to pivot through regions covered by
simplices of this size., Homotopy-type fixed point algorithms reach such
diameters only at the 15th or 16th level of refinement, and then they
stop. At this point the economic algorithm is just getting started. A
reasonable analogy would be to operate Scarf's algorithm with 50,000
grid points along each edge of the simplex instead of the usual hundred
or so. In the next section the comnection between grid size and number
of iterations will be made more precise,

Although the total iteration counts for the test problems are large
as a group, sizeable differences exist from problem to problem. Few of

these differences can be attributed to grid size, On the contrary
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iteration counts appear to be negatively correlated with average grid size.
Some of the differences can be explained, however, by the dimensionality
of the problems. The 14 and 15-'"commodity'" runs, for example, tended

to require many more iterations than the 4,5, and 6-'"commodity" runs
(problem 12 must be adjusted for the fact that it only reached ¢g(0.3)).
Differences among the smaller problems cannot, however K be attributed to
their dimensionality. A better explanation is afforded by the shape of
the equilibrium graphs, some of which are displayed later in this sectionm.
Problems whose graphs embody the most radical price changes tended to
require the most iterations. Problems with comparatively minor price
variations required the fewest iterations. These facts suggest that
computational effort in parametric equilibrium problems depends heavily
on the severity of the applied deformation, Additional evidence in
support of this hypothesis will be offered in the next sectionmn.

Despite the unprecedented numbers of iterations required to compute
full equilibrium graphs, the performance of the algorithm in locating
approximate equilibria for the initial economies was quite respectable,
Compared with Scarf's algorithm, which is the standard technique for
approximating general economic equilibria, the economic algorithm per-
formed extremely well., Based on three single-economy examples with
activity analysis production (the 6 and 1l commodity examples in Scarf's
book [13] and the 7-commodity example in Shoven's dissertation [14]),
the economic algorithm achieved a seven-to-tenfold improvement in itera-
tions required to attain a given level of accuracy. Such results are

consistent with similar experience in conventional fixed point problems.

172




i e gt ot e e . R 3

FE )

R s

Two columns of statistics in Table 6.2.1 shed some light on the

performance of the dynamic control mechanism. The manifold block counts
and grid size ranges indicate that substantial fluctuations in range error
were detected during the course of the algorithm, and that the dynamic
construction mechanism adjusted the manifold in response to these
fluctuations. The observed stability of range error confirms that the
adjustments had the intended effect., The most extreme variation in grid
size occurred in problem 9 where six levels of refinement were used. The
least variation occurred in problems 1 2, and 8 where only two levels
were used. No discernable characteristics of the test problems adequately
explain the observed differences in block counts or grid size variationm.

The CPU time consumed by the test problems may be analyzed in terms
of CPU time per iteration times number of iterations, The time per
iteration depended to a large extent on the number of dimensions in the
problem the dependence being approximately quadratic over the experi-
mental range. Variations in the number of jterations have already been
discussed.

Another perspective on time consumption is provided by Table 6.2.2.
It is evident from the sample of problems presented in this table that
the bulk of the processing time was expended on label generation. Pro-
duction labels and demand labels on average comprised roughly equal
portions of the total, although the shares in individual cases were
influenced by the relative numbers of consumers and production sectors,
The second most expensive activity was label system manipulation, which

used about a third as much time as label generation. Basis re-inversion
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accounted for a minor fraction of this total. Surprisingly, the most

logically intricate activity, manifold construction and pivoting, con-
sumed comparatively little time.

Probably the least exciting aspect of the numerical experiments
was the type of approximate equilibrium graphs they produced. In all
thirteen test problems the algorithm proceeded monotonically through
the family of economies from €(0) to g(l). No backtracking or
"catastrophe" effects were observed. This may have happened because the
economies in the test problems admit unique equilibria. On the other
hand, the monotone behavior could have resulted from geometries similar
to those illustrated in Figures 1,1.2 or 1.1.3. Unfortunately none of
the known testable criteria for uniqueness apply to the economic models
considered here because of the CRS production.

The case for uniqueness receives some support from the fact that
in all problems for which comparisons are valid, the observed equilibria
for ¢(0) and g(l) agree completely with those obtuined by Scarf and
Shoven using different computational techniques, The three six-commodity
test problems reached an approximate equilibrium for ¢&(0) identical to
the one reported in Scarf's book [13], which was obtained via Scarf's
algorithm, The five and fifteen-'"commodity'" examples (test problems 9,
10, and 13) matched Shoven's results at both ends of the equilibrium
graph, Shoven obtained his pairs of equilibria by forcing the unevenly
taxed economy to fit empirical observations and by subjecting the tax-
equalized counterpart to a Newtonian searc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>